What Kinds of Discontinuities Are There?

Mr. Sorice

A.P. Calculus AB/Calculus I Lesson II.iii.2 September 28, 2019

Recall: Formal Definition of Continuity

Let f be a function and c a value of its domain. Then f is continuous at c if and only if:

$$\lim_{x\to c} f(x) = f(c).$$

Recall: Formal Definition of Continuity

Let f be a function and c a value of its domain. Then f is continuous at c if and only if:

$$\lim_{x\to c}f(x)=f(c).$$

Remember: continuity works both ways and is all or nothing!

Let's return to the function I asked you to think about at the start of class.

• What's its limit as $x \to 0$?

- What's its limit as $x \to 0$?
 - It has none!

- What's its limit as $x \to 0$?
 - It has none!
- What "went wrong" with its limit?

- What's its limit as $x \to 0$?
 - It has none!
- What "went wrong" with its limit?
- How can we deal with it?

- What's its limit as $x \to 0$?
 - It has none!
- What "went wrong" with its limit?
- How can we deal with it?
 - What about handed limits?

- What's its limit as $x \to 0$?
 - It has none!
- What "went wrong" with its limit?
- How can we deal with it?
 - What about handed limits?
- Is it continuous at x = 0?

- What's its limit as $x \to 0$?
 - It has none!
- What "went wrong" with its limit?
- How can we deal with it?
 - What about handed limits?
- Is it continuous at x = 0?
- What "went wrong" with its continuity?

What to do about it

Let's revisit our driving question:

What to do about it

Let's revisit our driving question:

Are all discontinuous functions alike?

What to do about it

Let's revisit our driving question:

Are all discontinuous functions alike?

We've just looked at how one discontinuous function is, but are the all like that? Let's look at some functions and find out!

Activity Time

Questions before we begin?

Activity Time

Questions before we begin?

- Get together with your home group.
 - Each group gets a worksheet and set of cards.
- Remember our formal definition of <u>continuity</u>, since it will help you to understand discontinuity:

Given a function f and a value c in its domain, f is continuous at c if and only if $\lim_{x\to c} f(x) = f(c)$.

• Be prepared to share results with the class.

