Study Guide and Intervention

Solving Polynomial Equations

Factor Polynomials

Techniques for Factoring Polynomials	For any number of terms, check for:
	greatest common factor
	For two terms, check for:
	Difference of two squares
	$a^2 - b^2 = (a + b)(a - b)$
	Sum of two cubes
	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
	Difference of two cubes
	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
	For three terms, check for:
	Perfect square trinomials
	$a^2 + 2ab + b^2 = (a + b)^2$
	$a^2 - 2ab + b^2 = (a - b)^2$
	General trinomials
	$acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$
	For four or more terms, check for:
	Grouping
	ax + bx + ay + by = x(a + b) + y(a + b)
	=(a+b)(x+y)

Example Factor $24x^2 - 42x - 45$.

First factor out the GCF to get $24x^2 - 42x - 45 = 3(8x^2 - 14x - 15)$. To find the coefficients of the *x* terms, you must find two numbers whose product is $8 \cdot (-15) = -120$ and whose sum is -14. The two coefficients must be -20 and 6. Rewrite the expression using -20x and 6*x* and factor by grouping.

$8x^2 - 14x - 15 = 8x^2 - 20x + 6x - 15$	Group to find a GCF.
= 4x(2x - 5) + 3(2x - 5)	Factor the GCF of each binomial.
=(4x+3)(2x-5)	Distributive Property
Thus, $24x^2 - 42x - 45 = 3(4x + 3)(2x - 5)$.	

Exercises

Factor completely. If the polynomial is not factorable, write prime.

1. $14x^2y^2 + 42xy^3$	2. $6mn + 18m - n - 3$	3. $2x^2 + 18x + 16$	
4. $x^4 - 1$	5. $35x^3y^4 - 60x^4y$	6. $2r^3 + 250$	
7. $100m^8 - 9$	8. $x^2 + x + 1$	9. $c^4 + c^3 - c^2 - c$	

NAME .

Study Guide and Intervention 5-5

(continued)

Solving Polynomial Equations

Solve Polynomial Equations If a polynomial expression can be written in quadratic form, then you can use what you know about solving quadratic equations to solve the related polynomial equation.

Example 1 $r^4 - 40r^2 + 144 - 0$

Solve $x^4 - 40x^2 + 144 = 0$.

$x^4 - 40x^2 + 144 = 0$	Origin	al equation	
$(x^2)^2 - 40(x^2) + 144 = 0$	Write the expression on the left in quadratic form.		
$(x^2 - 4)(x^2 - 36) = 0$	Facto	r.	
$x^2 - 4 = 0$	or	$x^2 - 36 = 0$	Zero Product Property
(x-2)(x+2) = 0	or	(x-6)(x+6) = 0	Factor.
x - 2 = 0 or $x + 2 = 0$	or <i>x</i> –	-6 = 0 or $x + 6 = 0$	Zero Product Property
x = 2 or $x = -2$	or	x = 6 or $x = -6$	Simplify.

The solutions are ± 2 and ± 6 .

Example 2 Solve $2x + \sqrt{x} - 15 = 0$.

$2x + \sqrt{x} - 15 = 0$	Original equation	
$2(\sqrt{x})^2 + \sqrt{x} - 15 = 0$	Write the expression on the left in quadratic form.	
$(2\sqrt{x} - 5)(\sqrt{x} + 3) = 0$	Factor.	
$2\sqrt{x} - 5 = 0$ or $\sqrt{x} + 3 = 0$	Zero Product Property	
$\sqrt{x} = \frac{5}{2}$ or $\sqrt{x} = -3$	Simplify.	

Since the principal square root of a number cannot be negative, $\sqrt{x} = -3$ has no solution. The solution is $\frac{25}{4}$ or $6\frac{1}{4}$.

Exercises

Solve each equation.

- **2.** $x^4 6x^2 = -8$ 3. $x^4 - 3x^2 = 54$ 1. $x^4 = 49$
- 4. $3t^6 48t^2 = 0$ **5.** $m^6 - 16m^3 + 64 = 0$ 6. $y^4 - 5y^2 + 4 = 0$
- 9. $\frac{1}{x^2} \frac{7}{x} + 12 = 0$ 8. $4x^4 - 73x^2 + 144 = 0$ 7. $x^4 - 29x^2 + 100 = 0$
- 12. $x^{\frac{2}{3}} 5x^{\frac{1}{3}} + 6 = 0$ **11.** $x - 10\sqrt{x} + 21 = 0$ **10.** $x - 5\sqrt{x} + 6 = 0$