Study Guide and Intervention

Roots and Zeros

Synthetic Types of Roots The following statements are equivalent for any polynomial function f(x).

- c is a zero of the polynomial function f(x).
- *c* is a root or solution of the polynomial equation f(x) = 0.
- (x c) is a factor of the polynomial f(x).
- If c is real, then (c, 0) is an intercept of the graph of f(x).

Fundamental Theorem of Algebra	Every polynomial equation with degree greater than zero has at least one root in the set of complex numbers.		
Corollary to the Fundamental Theorem of Algebras	A polynomial equation of the form $P(x) = 0$ of degree <i>n</i> with complex coefficients has exactly <i>n</i> roots in the set of complex numbers, including repeated roots.		
Descartes' Rule of Signs	 If P(x) is a polynomial with real coefficients whose terms are arranged in descending powers of the variable, the number of positive real zeros of y = P(x) is the same as the number of changes in sign of the coefficients of the terms, or is less than this by an even number, and the number of negative real zeros of y = P(x) is the same as the number of changes in sign of the coefficients of the terms of P(-x), or is less than this number by an even number. 		

Example 1 Solve the equation $6x^3 + 3x = 0$. State the number and type of roots.

$$6x^{3} + 3x = 0$$

$$3x(2x^{2} + 1) = 0$$

Use the Zero Product Property.

$$3x = 0 \quad \text{or} \quad 2x^{2} + 1 = 0$$

$$x = 0 \quad \text{or} \quad 2x^{2} = -1$$

$$x = \pm \frac{i\sqrt{2}}{2}$$

The equation has one real root, 0, and two imaginary roots, $\pm \frac{i\sqrt{2}}{2}$.

Exercises

Solve each equation. State the number and type of roots.

1.
$$x^2 + 4x - 21 = 0$$
 2. $2x^3 - 50x = 0$ **3.** $12x^3 + 100x = 0$

State the possible number of positive real zeros, negative real zeros, and imaginary zeros for each function.

4.
$$f(x) = 3x^3 + x^2 - 8x - 12$$

5. $f(x) = 3x^5 - x^4 - x^3 + 6x^2 - 5$

Example 2 State the number of positive real zeros, negative real zeros, and imaginary zeros for $p(x) = 4x^4 - 3x^3 - x^2 + 2x - 5$.

Since p(x) has degree 4, it has 4 zeros.

Since there are three sign changes, there are 3 or 1 positive real zeros.

Find p(-x) and count the number of changes in sign for its coefficients.

$$p(-x) = 4(-x)^4 - 3(-x)^3 + (-x)^2 + 2(-x) - 5$$

= 4x⁴ + 3x³ + x² - 2x - 5

Since there is one sign change, there is exactly 1 negative real zero.

Thus, there are 3 positive and 1 negative real zero or 1 positive and 1 negative real zeros and 2 imaginary zeros.

_ PERIOD .

(continued)

Study Guide and Intervention

Roots and Zeros

Find Zeros

Complex Conjugate	Suppose a and b are real numbers with $b \neq 0$. If $a + bi$ is a zero of a polynomial
Theorem	function with real coefficients, then $a - bi$ is also a zero of the function.

Example Find all of the zeros of $f(x) = x^4 - 15x^2 + 38x - 60$.

Since f(x) has degree 4, the function has 4 zeros.

 $f(x) = x^4 - 15x^2 + 38x - 60 \qquad f(-x) = x^4 - 15x^2 - 38x - 60$

Since there are 3 sign changes for the coefficients of f(x), the function has 3 or 1 positive real zeros. Since there is + sign change for the coefficients of f(-x), the function has 1 negative real zero. Use synthetic substitution to test some possible zeros.

2	1	0	-15	38	-60
		2	4	-22	32
	1	2	-11	16	-28
3	1	0	-15	38	-60
		3	9	-18	60
	1	3	-6	20	0

So 3 is a zero of the polynomial function. Now try synthetic substitution again to find a zero of the depressed polynomial.

-2	1	3	-6	20
		-2	-2	16
	1	1	-8	36
-4	1	3	-6	20
		-4	4	8
	1	-1	-2	28
-5	1	3	-6	20
		-5	10	-20
	1	-2	4	0

So -5 is another zero. Use the Quadratic Formula on the depressed polynomial $x^2 - 2x + 4$ to find the other 1 zeros, $1 \pm i\sqrt{3}$.

The function has two real zeros at 3 and -5 and two imaginary zeros at $1 \pm i\sqrt{3}$.

Exercises

Find all zeros of each function.

1. $f(x) = x^3 + x^2 + 9x + 9$ 2. $f(x) = x^3 - 3x^2 + 4x - 12$ 3. $p(a) = a^3 - 10a^2 + 34a - 40$ 4. $p(x) = x^3 - 5x^2 + 11x - 15$ 5. $f(x) = x^3 + 6x + 20$ 6. $f(x) = x^4 - 3x^3 + 21x^2 - 75x - 100$