
MAT 2270: Problem Set 3
Mike Sorice

1. There are infinitely many quadratic expressions of the form y = ax2 + bx + c. But what percent of
those are factorable over the integers when a, b, and c are each nonzero integers from -10 to 10?
Generate 25 random quadratic expressions of this type and determine what percentage are factorable.

For notational convenience, let:

C = {c ∈ Z : |c| ≤ 10 ∧ c 6= 0} = {−10.− 9,−8,−7,−6,−5,−4,−3,−2,−1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

and let:
P = {ax2 + bx+ c : (a, b, c) ∈ C3}.

Table 1 shows factorability over Z for a random sample of 25 polynomials from P. See PS3-1-Sorice.ggb
for computations.

Polynomial Output of Factor Factorable Over Z? Discriminant

−3x2 − 2x+ 4 −3x2 − 2x+ 4 No 52

−9x2 + 2x− 4 −9x2 + 2x− 4 No −140

6x2 − 2x− 6 2(3x2 − x− 3) No 148

4x2 + 6x− 9 4x2 + 6x− 9 No 180

−9x2 − x− 3 −9x2 − x− 3 No −107

3x2 − 7x+ 6 3x2 − 7x+ 6 No −23

7x2 + 10x+ 7 7x2 + 10x+ 7 No −96

−3x2 + 6x+ 10 −3x2 + 6x+ 10 No 156

−9x2 − x− 1 −9x2 − x− 1 No −35

−9x2 − 7x+ 2 −(x+ 1)(9x− 2) Yes 121 = 112

9x2 + 7x− 7 9x2 + 7x− 7 No 301

−3x2 + 3x+ 6 −3(x− 2)(x+ 1) Yes 81 = 92

9x2 + 7x+ 6 9x2 + 7x+ 6 No −167

8x2 + 9x− 6 8x2 + 9x− 6 No 273

−x2 − x+ 6 −(x− 2)(x+ 3) Yes 25 = 52

−6x2 + 3x− 8 −6x2 + 3x− 8 No −183

7x2 − x+ 10 7x2 − x+ 10 No −279

10x2 + 2x+ 7 10x2 + 2x+ 7 No −276

9x2 + 6x− 4 9x2 + 6x− 4 No 180

5x2 − 5x+ 5 5(x2 − x+ 1) No −75

−8x2 − 3x− 1 −8x2 − 3x− 1 No −23

−8x2 − 2x− 6 −2(4x2 + x+ 3) No −188

−3x2 − 4x+ 7 −(x− 1)(3x+ 7) Yes 100 = 102

4x2 − 9x− 8 4x2 − 9x− 8 No 209

−6x2 − 8x+ 3 −6x2 − 8x+ 3 No 136

Table 1: Factorability over Z for 25 randoma quadratics from P.
a: Generated by GeoGebra computer algebra system (C.A.S.) RandomPolynomial(2,-10,10) with polynomials having any zero coefficient discarded.

(a) What does it mean when we say a quadratic expression is factorable?

A quadratic is factorable if and only if it can be written as the product of two linear terms
with coefficients from some factor domain. The latter rightly should be specified, but there is a
regrettable tendency to use “factorable” without specifying the factor domain, in which case it
is often Z or Q.

(b) What domain (by default) does GeoGebra factor over?

It factors over Z. The output of Factor

[(
x+

1

2

)2
]

is
(2x+ 1)2

4
and not

(
x+

1

2

)2

, for

instance.

(c) How many possible quadratic expressions are there with non-zero integer coefficients from -10
to 10?

#C = 20. Each polynomial in P has 3 independent coefficients. Therefore, #P = 203 = 8000.

(d) What has to be true about the discriminant of a quadratic expression for it to be factorable over
the integers?

Consider a quadratic f(x):
f(x) = ax2 + bx+ c, a 6= 0.

Its discriminant is:
d = b2 − 4ac

so that its roots are:
−b±

√
d

2a
.

Its factored form is thus:

f(x) = a

(
x+

b+
√
d

2a

)(
x+

b−
√
d

2a

)
=

(2ax+ b+
√
d)(2ax+ b−

√
d)

4a
,

which will be a factorization over the integers if and only if (a, b,
√
d) ∈ Z3. As all the polynomials

in P have integer coefficients, the restriction there is reduced to d = b2 − 4ac being the square
of some integer. This is borne out by the “Discriminant” column in Table 1.

(e) What percentage did you obtain?

p̂ = 4÷ 25 = 16% of the sample of P used to generate Table 1 factors over Z.

How confident are you in your percentage? Explain.

To generate p̂, a random sample of n0 = 25 polynomials was taken from a finite population
of N = #P = 8000. p̂0 is the best available estimate of the population proportion p, i.e.
the true percentage of polynomials from P that factor over Z. Thus, n0p ≈ n0p̂0 = 4. With
the best estimate for n0p less than 10 and n0 = 25 < 30, these data are not suitable for
making inferences, as the sampling distribution of the proportion isn’t well characterized until
(np > 10) ∧ [n(1− p) > 0] ∧ (n > 30) [1, p. 269]. Therefore, one can’t be very confident that p̂
is a good estimate of p.

To fix this issue, the experiment was repeated for 200 more random polynomials from P, 25 of
which were factorable. This produces a better estimate of the proportion:

p̂ =
25 + 4

200 + 25

.
= 0.129.

The data now satisfy all criteria for approximate normality of the sampling distribution of the
proportion:

(np ≈ np̂ = 29 ≥ 10) ∧ [n(1− p) ≈ n(1− p̂) = 196 ≥ 10] ∧ (n = 225 > 30).

Therefore, p̂ has a standard error [1, pp. 271–272]:

σp̂ =

√
p(1− p)

n

N − n
N − 1

≈
√
p̂(1− p̂)

n

N − n
N − 1

.
= 0.022.

Using this, we can state with 95% confidence [1, pp. 362–364] that:

p̂− σp̂z0.0251 ≈ 8.6% < p < 17.2% ≈ p̂+ σp̂z0.025.

1z0.025 =
√
2 erf−1(0.95)

.
= 1.96.

Does this seem like a high or a low number? Explain.

By Part 1c, a polynomial from P is factorable over Z if and only if its discriminant is a square.
Discriminants in P are integers ranging from −400 = 02−4×10×10 to 500 = 102 +4×10×10.
That range contains the squares up to 222 = 484, on which basis the proportion of P factorable
over Z can be very grossly estimated as p̂′ ∼ 22÷ 900

.
= 2.4%.

In light of p̂′, p̂ = 12.9% seems high. On the contrary, however, it is highly certain that p >
8.6%� p̂′. This discrepancy may be explained by the tacit assumption in analysis producing p̂′

that the distribution of discriminants in P is at least approximately uniform. If the distribution
of discriminants were concentrated near the squares, which are themselves concentrated in the
lower positive integers, a correspondingly higher proportion of P would factor over Z.
In light of the uncertainty here, PS3-1-Sorice.xlsx was devised to determine the factorability
of all 8000 polynomials in P. This gives p = 892 ÷ 8000 = 11.15%, consistent with p̂ =
12.9%. The large discrepancy of p from ĥ′

.
= 2.4% is indeed explained by the highly non-

uniform distribution of discriminants, for which see Figure 1. This distribution has a number
of interesting features, including both peakedness near zero increasing gaps between non-zero-
frequency entries as the discriminant gets further from zero.

Figure 1: Distribution of discriminants in P.

2. Using the GeoGebra C.A.S., differentiate yn = (nx+ 1)x for n = 1, 2, 3, 4.

The results are tabulated as Table 2. See PS3-2-1-Sorice.ggb for details.

n yn Output of Derivative[yn]

1 (x+ 1)x x(x+ 1)x−1 + ln(x+ 1)(x+ 1)x

2 (2x+ 1)x 2x(2x+ 1)x−1 + ln(2x+ 1)(2x+ 1)x

3 (3x+ 1)x 3x(3x+ 1)x−1 + ln(3x+ 1)(3x+ 1)x

4 (4x+ 1)x 4x(4x+ 1)x−1 + ln(4x+ 1)(4x+ 1)x

Table 2: Derivative of yn for n ∈ {1, 2, 3, 4} computed by GeoGebra C.A.S. Derivative.

Write the general rule for the derivative of yn = (nx+ 1)x, n ∈ Z+.

dyn
dx

= nx(nx+ 1)x−1 + ln(nx+ 1)(nx+ 1)x =

[
nx

nx+ 1
+ ln(nx+ 1)

]
(nx+ 1)x.

Explain how the C.A.S. output can help one in determining this rule. Be specific.

The C.A.S. facilitates discovery of this rule by allowing quick comparison of the output at various
values of n. It’s fair to say that the rule seems quite obvious from just a few instances – the coefficient
n is the only thing that changes from one instance to the next and its role in the result is clear to
spot.

The pattern developed by the C.A.S. can also be used to verify an analytical result:

dyn
dx

=
d

dx
(nx+ 1)x =

dex ln(nx+1)

dx
= ex ln(nx+1)d[x ln(nx+ 1)]

dx

= (nx+ 1)x
[
ln(nx+ 1) + x

d ln(nx+ 1)

dx

]
= (nx+ 1)x

[
ln(nx+ 1) + x

1

nx+ 1

d(nx+ 1)

dx

]
= (nx+ 1)x

[
ln(nx+ 1) + x

1

nx+ 1
n

]
=

[
ln(nx+ 1) +

nx

nx+ 1

]
(nx+ 1)x,

which is the same expression as above.

Based only on the C.A.S. work, would it be reasonable to extend your rule to the domain n ∈ Z?
Explain.

It would be somewhat reasonable. The derived expression returns 0 for n = 0, as it ought, and the
generalization that led to it applies equally well for negative n. Obviously, it would be prudent to
investigate the result for some negative n, which can be found as PS3-2-2-Sorice.ggb.

An important consideration is the domain of x on which these results are valid. However, this is
equally so for positive n – the expression is singular on nx + 1 ≤ 0 in both cases. For n > 0, this

means that the derivative is defined on x > − 1

n
whereas for n < 0, the domain is x < − 1

n
.

3. First, simplify (if possible) each expression below. Next, enter each of the following expressions using
correct GeoGebra syntax into the GeoGebra C.A.S.

• sin (arcsinx)

sin[arcsin(x)] = x

by definition of arcsin. See PS3-3-1-Sorice.ggb for concurring GeoGebra result.

It is interesting to note that we may have expected complications here as arcsin is only real for
−1 ≤ x ≤ 1, but it can be extended to a complex function almost everywhere in C without
difficulty [2]. However, GeoGebra’s C.A.S. runs into difficulties with at least some explicitly
complex values, for example arcsin(2), for which GeoGebra C.A.S. outputs:

sin[−i ln(i
√

3 + 2i)].

This it is seemingly unable to evaluate – c.f. PS3-3-1-Sorice.ggb. However, this can be
evaluated analytically without much difficulty using the exponential definition of sin:

sin[−i ln(i
√

3 + 2i)] =
ei[−i ln(i

√
3+2i)] − e−i[−i ln(i

√
3+2i)]

2i
=
eln[i(2+

√
3)] − e− ln[i(2+

√
3)]

2i

=
i(2 +

√
3)− 1

i(2+
√
3)

2i
=
i(2 +

√
3)− 1

i(2+
√
3)

i
i

2i
=
i(2 +

√
3)− i

−(2+
√
3)

2i

=
2 +
√

3 + 1
2+
√
3

2
=

2 +
√

3 + 1
2+
√
3
2−
√
3

2−
√
3

2
=

2 +
√

3 + 2−
√
3

4−3
2

=
2 +
√

3 + 2−
√

3

2
=

4

2
= 2.

See Figure 2 for results from Texas Instruments’ Advanced Mathematics Software Computer Al-
gebra System (T.I.C.A.S) running on a TI-89 calculator. This system also outputs sin[arcsin(x)] =
x, but for sin[arcsin(2)] it gives: √

4
√

3 + 7

2
+

1

2
√

4
√

3 + 7
.

This can be reduced analytically using 7 + 4
√

3 = (2)2 + 2(2×
√

3) + (
√

3)2 = (2 +
√

3)2:√
4
√

3 + 7

2
+

1

2
√

4
√

3 + 7
=

2 +
√

3

2
+

1

2(2 +
√

3)
=

1

2

(
2 +
√

3 +
1

2 +
√

3

2−
√

3

2−
√

3

)

=
1

2

(
2 +
√

3 +
2−
√

3

4− 3

)
=

4

2
= 2,

but T.I.C.A.S. makes this reduction itself on re-evaluation of the output – see Figure 2! Clearly
some simplifying function is implicitly called at output, but it is not clear why this is not done
before initial output from arcsin. This is an odd behavior which could be considered a bug in
T.I.C.A.S.

Figure 2: T.I.C.A.S. also outputs x for sin[arcsin(x)] and eventually reduces sin[arcsin(2)] to 2.

These behaviors strongly suggest for both these systems that sin[arcsin(x)] = x is a hard-coded
output of the sin function, or the domain of x is implicitly restricted for calls to arcsin(x)
with x variable.

• 2−2r4r

2−2r4r =
1

22r
4r =

4r

(22)r
=

4r

4r
= 1.

Presented this input, GeoGebra C.A.S. outputs 4r · 2−2r, but the Simplify command produces
the expected output, 1. See PS3-3-2-Sorice.ggb for this computation. I would speculate
that GeoGebra C.A.S. makes the conservative choice to do little or no manipulation of the input
beyond the most basic simplification unless explicitly told to do so by, for instance, the Simplify
command.

T.I.C.A.S. is somewhat more aggressive in this case, outputting 1 directly on evaluation – see
Figure 3.

Figure 3: T.I.C.A.S. produces 1 directly from 2−2r4r.

• ln

(
t− 1

t

)
+ ln

(
t

t− 1

)

ln

(
t− 1

t

)
+ ln

(
t

t− 1

)
= ln

[(
t− 1

t

)
t

t− 1

]
= ln

(
t2 − 1

t− 1

)
= ln

[
(t+ 1)(t− 1)

t− 1

]
= ln(t+ 1).

It should be noted that the initial expression is only defined where both the logarithms have
positive input, i.e. only if both:

t− 1

t
> 0⇔ t >

1

t
⇔ [(t > 0) ∧ (t2 > 1)] ∨ [(t < 0) ∧ (t2 < 1)] ≡ (t > 1) ∨ (−1 < t < 0)

and:

t

t− 1
> 0⇔ [(t > 0) ∧ (t− 1 > 0)] ∨ [(t < 0) ∧ (t− 1 < 0)] ≡ (t > 1) ∨ (t < 0).

Combining which yields:

[(t > 1) ∨ (−1 < t < 0)] ∧ [(t > 1) ∨ (t < 0)] ≡[(t > 1) ∧ (t > 1)︸ ︷︷ ︸
t>1

] ∨ [(t > 1) ∧ (t < 0)︸ ︷︷ ︸
F

]∨

[

F︷ ︸︸ ︷
(−1 < t < 0) ∧ (t > 1)] ∨ [(−1 < t < 0) ∧ (t < 0)]

≡(t > 1) ∨ [(−1 < t) ∧ (t < 0) ∧ (t < 0)︸ ︷︷ ︸
t<0

]

≡(t > 1) ∨ [(−1 < 1) ∧ (t < 0)] ≡ (t > 1) ∨ (−1 < t < 0),

so that the initial expression is defined on (−1, 0)∪ (1,∞). On that set, t+1 > 0, so the reduced
expression is well-defined everywhere the initial expression was – in fact, this was guaranteed by
the method of reduction, which assumed only that both inputs were positive (at the combination
of logarithms.) However, the reduced function is also valid on [0, 1], which the initial function
is not! Therefore, it will be best to explicitly state:

ln

(
t− 1

t

)
+ ln

(
t

t− 1

)
=

{
ln(t+ 1), (−1 < t < 0) ∨ (t > 1)

undefined, elsewhere
.

As with the previous part, GeoGebra C.A.S. outputs the input, but Simplify provides the
reduced answer ln(t+ 1). The invalidity of the reduction for 0 ≤ t ≤ 1 is not mentioned, which
must be counted as a loss of fidelity. See PS3-3-3-Sorice.ggb for details.

T.I.C.A.S. does not reduce the expression unless a correct condition is placed on t:

Figure 4: No reduction from T.I.C.A.S. unless restriction placed on t.

but when correct stipulations are placed using the | operator, full and correct reduction is done
at evaluation:

Figure 5: Reduction at evaluation by T.I.C.A.S. when t properly restricted.

Further, T.I.C.A.S. produces valid partial simplification if lesser restrictions are placed:

Figure 6: Partial reduction from T.I.C.A.S. when proper restriction placed on t.

References

[1] Irwin Miller and Marylees Miller. Mathematical Statistics. 7th ed. Pearson, 2003.

[2] Eric W. Weisstein. Inverse Sine. url: http://mathworld.wolfram.com/InverseSine.html (visited
on 03/24/2019).

