
1. Introduction

The process of factoring polynomials, specifically quadratic trinomials, is taught in
nearly every American high school algebra curriculum. Learners devote substantial
time and effort to factoring by a number of methods. We claim that tools of tech-
nology, specifically computer algebra systems (CAS) and spreadsheets, have deepened
high school students’ potential thought about factoring. In essence, we believe that
technology can provide opportunities for insights into factoring that can build a better
conceptual understanding of factoring, as opposed to merely enhancing or supplement-
ing by-hand procedures. Building on an example problems from a high school textbook,
we investigated what it means for a quadratic polynomial to be factorable and quanti-
fied how rare (or common) factorability is for polynomials over portions of the integers
using these tools.

2. Initial Analysis

We began by considering the following problem, adapted from a widely used high
school algebra text [1, pp. 738–740]:

There are infinitely many quadratic expressions of the form y = ax2 + bx + c.
But what percent of those are factorable over the integers when a, b, and c are each
nonzero integers from -10 to 10? Generate 25 random quadratic expressions of this
type and determine what percentage are factorable.

For notational convenience, let:

CM = {n ∈ Z : 1 ≤ |n| ≤M}

so that C10 is the coefficient domain of interest. Let:

PM = {ax2 + bx+ c : (a, b, c) ∈ C3
M}.

The question as posed, then, is to find the proportion p of polynomials from P10 that
factor over Z.

To approach this problem, we used a CAS (in this case we used GeoGebra, but
any CAS should do) to generate Table 1, which shows the factorability over Z for a
random sample of 25 polynomials from P10. To create the sample, we generated triples
of pseudorandom integers between −10 and 10, discarding any triple with a zero, then
used 25 of these triples as coefficients for polynomials as input to GeoGebra’s Factor
function. Note that by default GeoGebra factors over Z, which is the domain needed.

While Table 1 addresses the initial question, allowing the finding that p̂0 = 16% of
our sample is factorable, it seems to raise at least as many questions as it answers. Is our
sample representative so that the 16% figure is an accurate estimate of the factorable
proportion of P10? What might happen if we expand the coefficient domain? What
about more general factorability considerations?

An initial question we considered was: When is a quadratic polynomial of this type
factorable? A quadratic is factorable if and only if it can be written as the product
of two linear terms with coefficients from some factor domain. In this case, because
we are factoring over Z, we want integer coefficients on our factors. Knowing this



Polynomial Output of Factor Factorable over Z? Discriminant

−3x2 − 2x+ 4 −3x2 − 2x+ 4 No 52
−9x2 + 2x− 4 −9x2 + 2x− 4 No −140
6x2 − 2x− 6 2(3x2 − x− 3) No 148
4x2 + 6x− 9 4x2 + 6x− 9 No 180
−9x2 − x− 3 −9x2 − x− 3 No −107
3x2 − 7x+ 6 3x2 − 7x+ 6 No −23
7x2 + 10x+ 7 7x2 + 10x+ 7 No −96
−3x2 + 6x+ 10 −3x2 + 6x+ 10 No 156
−9x2 − x− 1 −9x2 − x− 1 No −35
−9x2 − 7x+ 2 −(x+ 1)(9x− 2) Yes 121 = 112

9x2 + 7x− 7 9x2 + 7x− 7 No 301
−3x2 + 3x+ 6 −3(x− 2)(x+ 1) Yes 81 = 92

9x2 + 7x+ 6 9x2 + 7x+ 6 No −167
8x2 + 9x− 6 8x2 + 9x− 6 No 273
−x2 − x+ 6 −(x− 2)(x+ 3) Yes 25 = 52

−6x2 + 3x− 8 −6x2 + 3x− 8 No −183
7x2 − x+ 10 7x2 − x+ 10 No −279
10x2 + 2x+ 7 10x2 + 2x+ 7 No −276
9x2 + 6x− 4 9x2 + 6x− 4 No 180
5x2 − 5x+ 5 5(x2 − x+ 1) No −75
−8x2 − 3x− 1 −8x2 − 3x− 1 No −23
−8x2 − 2x− 6 −2(4x2 + x+ 3) No −188
−3x2 − 4x+ 7 −(x− 1)(3x+ 7) Yes 100 = 102

4x2 − 9x− 8 4x2 − 9x− 8 No 209
−6x2 − 8x+ 3 −6x2 − 8x+ 3 No 136

Table 1.: Factorability over Z for 25 random quadratics from P10.

and the conditions of the problem, we see that there are only 8000 unique quadratic
expressions that comprise P10.

Consider a typical quadratic polynomial: ax2 + bx+ c, with a 6= 0.

Its discriminant is: d = b2 − 4ac, so that its zeros are:
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It thus has factored forms:
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which will be a factorization over the integers if and only if (a, b,
√
d) ∈ Z3. As all

the polynomials in P10 have integer coefficients, the restriction here is reduced to
d = b2−4ac being the square of some integer. This is borne out by the “Discriminant”
column in Table 1.

With this in mind, we turned to a spreadsheet to generate all 8000 polynomials
in P10. A spreadsheet is well suited this task, because it allows for organization of
information and investigation of each individual quadratic. This could also have been
approached through programming – one author has done this using both Mathematica



and a TI-84 graphing calculator. A brute force approach shows that the factorability
of all 8000 polynomials in P10 is p = 892÷ 8000 = 11.15%

This result is quite a bit lower than the earlier obtained result in Table 1. This
caused us to wonder what someone should reasonably expect to get as a percentage
from a random sample of 25 polynomials with the stated criteria.

To generate p̂0, a random sample of n0 = 25 polynomials was taken from a finite
population of N = #P10 = 8000. p̂0 is the best available estimate of the population
proportion p. Thus, n0p ≈ n0p̂0 = 4. With the best estimate for n0p less than 10
and n0 = 25 < 30, these data are not suitable for making inferences, as the sampling
distribution of the proportion isn’t well characterized until (np > 10) ∧ [n(1 − p) >
0] ∧ (n > 30) [2, p. 269]. Therefore, we shouldn’t be very confident that p̂1 is a good
estimate of p.

To fix this issue, we repeated the experiment 8 more times, adding 200 more random
polynomials from P10, 25 of which were factorable. This produced a better estimate
of the proportion:

p̂ =
25 + 4

200 + 25

.
= 0.129.

The data now satisfy all criteria for approximate normality of the sampling distribution
of the proportion:

(np ≈ np̂ = 29 ≥ 10) ∧ [n(1− p) ≈ n(1− p̂) = 196 ≥ 10] ∧ (n = 225 > 30).

Therefore, p̂ has a standard error [2, pp. 271–272]:

σp̂ =
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≈
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.
= 0.022.

Using this, we can state with 95% confidence [2, pp. 362–364] that:

p̂− σp̂z0.025 ≈ 8.6% < p < 17.2% ≈ p̂+ σp̂z0.025.

Finally, with this result in mind, we looked at the distribution of discriminants,
reasoning that if discriminants are concentrated near the squares, which are themselves
concentrated in the lower positive integers, a correspondingly higher proportion of P10

would factor over Z. Figure 1 shows that the distribution is not uniform, is peaked
near zero (the curve being almost normal like), and has increasing gaps between non-
zero-frequency entries as the discriminant gets further from zero.



Figure 1.: Distribution of discriminants in P10.

3. Further Investigation

With the original problem exhausted, we turned to considering what happens if we
expand the coefficient domain. A considerable advantage of technology in this regard
is that we are free to change almost any parameter of the problem and have it assist us
in collecting data by almost the exact same procedure. We were thus able to continue
to use the spreadsheet used in the initial investigation with only minor adaptations.

M #PM # factorable % factorable
10 8000 892 11.15
11 10648 1084 10.18
12 13824 1404 10.16
13 17576 1640 9.33
14 21952 1972 8.98
15 27000 2344 8.68
20 64000 4628 7.23
25 125000 7800 6.24
30 216000 12076 5.59

Table 2.: Proportion of factorable polynomials in PM for varying M .



Figure 2.: Distribution of discriminants in P20.

Figure 3.: Distribution of discriminants in P30.

Table 2 shows the progression of factorable polynomials the bound on the coefficients
increases. It may seem surprising that the proportion of factorable polynomials drops
as M increases. However, consider that, as M increases, the number of polynomials,
8M3, will tend to outgrow the number that are factorable, ∼M2.38 in these data. To



consider this second growth rate further, note that, as M increases, so does the average
magnitude of the discriminant of a polynomial from PM . That, in turn, decreases the
probability that the discriminant is a square – the range of positive discriminants

is
[
1− 4M2, 5M2

]
, which contains

⌊
M
√

5
⌋

squares, meaning that the proportion of

squares falls off like 1/M . Consequently, we should expect that proportion of factorable
polynomials will continue to drop, so long as the distribution of discriminants does
not change too much in shape.

To examine this further, we generated figures 2 and 3, which show the distributions
of discriminants for M = 20 and 30. We can see that the shapes of these distributions
are similar to that in figure 1 – all are highly non-uniform, peaked slightly to the right
of 0, and normal-like. The stability of this shape tends to lead to the conclusion that
the factorable proportion will continue to decrease with M1.

4. Conclusion

Even the most “done and dusted”-seeming mathematics can hide truly curiosity-
inspiring subtleties. The use of technology allows investigation and pursuance of
that curiosity efficiently and effectively. While the backdrop of this investigation was
quadratic factoring, technology helped us to consider the interesting behavior of those
factors under changes in domain, which may be a very unfamiliar face of this well-
known body of procedure. The use of technology, along with the an appropriate amount
of mathematical sophistication, enabled an investigation that cut across mathematical
technologies and ideas. It is our hope that technology can continue to be a conduit for
these types of investigations.

1However, the peakedness of these distributions may be increasing with M , which, if significant, would tend
to offset this trend.
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