
1. Introduction

The process and procedure of factoring polynomials (specifically quadratic trinomi-
als) is one that appears in nearly every American high school algebra textbook. The
amount of time and number of methods that exist for factoring is numerous. Tech-
nology (specifically CAS) has advanced the potential for how deeply one can think
about factoring at the high school level. In essence, we believe that technology can
provide opportunities for insight into factoring that will further build a better concep-
tual understanding of the procedure, rather than enhance by hand methods. Building
off of a homework and example problem from an American high school textbook, we
investigated what it means for a quadratic polynomial to be factorable and further
how rare (or common) it could be for such polynomials to be factorable.

2. Initial Analysis

The problem, as modified from UCSMP Algebra Chapter 12 (pgs. 738-740)

There are infinitely many quadratic expressions of the form y = ax2 + bx + c.
But what percent of those are factorable over the integers when a, b, and c are each
nonzero integers from -10 to 10? Generate 25 random quadratic expressions of this
type and determine what percentage are factorable.

For notational convenience, let:

C = {n ∈ Z : |n| ≤ 10∧n 6= 0} = {−10.−9,−8,−7,−6,−5,−4,−3,−2,−1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

and let:

P = {ax2 + bx+ c : (a, b, c) ∈ C3}.

Using a CAS (in this case we used GeoGebra but any CAS should do), we generated
Table 1 which shows the factorability over Z for a random sample of 25 polynomials
from P. We discarded any polynomial that generated with a zero coefficient. We also
note that by default GeoGebra factors over Z, which is the domain needed.

While Table 1 provides the data to address the initial question (16% factorable), it
does not address several related issues related to factorability, expanding the coefficient
domain, etc. Are our data even correct?

An initial question we considered was when a quadratic expression of this type would
be factorable. A quadratic is factorable if and only if it can be written as the product
of two linear terms with coefficients from some factor domain. In this case because
we are factoring over Z, we want integer coefficients on our factors. Knowing this
and the conditions of the problem, we see that there are only 8000 unique quadratic
expressions that comprise P.
Now, consider, f(x): f(x) = ax2 + bx+ c, a 6= 0.

Its discriminant is: d = b2 − 4ac, so that its roots are:
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Polynomial Output of Factor Factorable Over Z? Discriminant

−3x2 − 2x+ 4 −3x2 − 2x+ 4 No 52
−9x2 + 2x− 4 −9x2 + 2x− 4 No −140
6x2 − 2x− 6 2(3x2 − x− 3) No 148
4x2 + 6x− 9 4x2 + 6x− 9 No 180
−9x2 − x− 3 −9x2 − x− 3 No −107
3x2 − 7x+ 6 3x2 − 7x+ 6 No −23
7x2 + 10x+ 7 7x2 + 10x+ 7 No −96
−3x2 + 6x+ 10 −3x2 + 6x+ 10 No 156
−9x2 − x− 1 −9x2 − x− 1 No −35
−9x2 − 7x+ 2 −(x+ 1)(9x− 2) Yes 121 = 112

9x2 + 7x− 7 9x2 + 7x− 7 No 301
−3x2 + 3x+ 6 −3(x− 2)(x+ 1) Yes 81 = 92

9x2 + 7x+ 6 9x2 + 7x+ 6 No −167
8x2 + 9x− 6 8x2 + 9x− 6 No 273
−x2 − x+ 6 −(x− 2)(x+ 3) Yes 25 = 52

−6x2 + 3x− 8 −6x2 + 3x− 8 No −183
7x2 − x+ 10 7x2 − x+ 10 No −279
10x2 + 2x+ 7 10x2 + 2x+ 7 No −276
9x2 + 6x− 4 9x2 + 6x− 4 No 180
5x2 − 5x+ 5 5(x2 − x+ 1) No −75
−8x2 − 3x− 1 −8x2 − 3x− 1 No −23
−8x2 − 2x− 6 −2(4x2 + x+ 3) No −188
−3x2 − 4x+ 7 −(x− 1)(3x+ 7) Yes 100 = 102

4x2 − 9x− 8 4x2 − 9x− 8 No 209
−6x2 − 8x+ 3 −6x2 − 8x+ 3 No 136

Table 1.: Factorability over Z for 25 random quadratics from P.

Its factored form is thus:
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which will be a factorization over the integers if and only if (a, b,
√
d) ∈ Z3. As all the

polynomials in P have integer coefficients, the restriction here is reduced to d = b2−4ac
being the square of some integer. This is borne out by the “Discriminant” column in
Table 1.

With this in mind, we turned to a spreadsheet to generate all 8000 quadratics. A
spreadsheet is an ideal technology for this because it allows for organization of infor-
mation and a way to investigate each individual quadratic. This could also have been
approached through programming. One author has done this using both Mathematica
and a TI-84 graphing calculator. A brute force approach shows that the factorability
of all 8000 polynomials in P is p = 892÷ 8000 = 11.15%

This result is quite a bit lower than the earlier obtained result in Table 1. This
caused the authors to wonder what should someone reasonably expect to get as a
percentage from a random sample of 25 polynomials with the stated criteria.



To generate p̂, a random sample of n0 = 25 polynomials was taken from a finite
population of N = #P = 8000. p̂0 is the best available estimate of the population
proportion p, i.e. the true percentage of polynomials from P that factor over Z. Thus,
n0p ≈ n0p̂0 = 4. With the best estimate for n0p less than 10 and n0 = 25 < 30,
these data are not suitable for making inferences, as the sampling distribution of the
proportion isn’t well characterized until (np > 10) ∧ [n(1 − p) > 0] ∧ (n > 30) [1,
p. 269]. Therefore, one can’t be very confident that p̂ is a good estimate of p.

To fix this issue, the experiment was repeated for 200 more random polynomials
from P, 25 of which were factorable. This produced a better estimate of the proportion:

p̂ =
25 + 4

200 + 25

.
= 0.129.

The data now satisfy all criteria for approximate normality of the sampling distribution
of the proportion:

(np ≈ np̂ = 29 ≥ 10) ∧ [n(1− p) ≈ n(1− p̂) = 196 ≥ 10] ∧ (n = 225 > 30).

Therefore, p̂ has a standard error [1, pp. 271–272]:
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.
= 0.022.

Using this, we can state with 95% confidence [1, pp. 362–364] that:

p̂− σp̂z0.025 ≈ 8.6% < p < 17.2% ≈ p̂+ σp̂z0.025.

Finally, with this result in mind we looked at the distribution of discriminanats,
reasoning that if the distribution of discriminants were concentrated near the squares,
which are themselves concentrated in the lower positive integers, a correspondingly
higher proportion of P would factor over Z. Figure 1 shows that the distribution is
not uniform, has peakness near zero (the curve is almost normal like), and increasing
gaps between non-zero-frequency entries as the discriminant gets further from zero.



Figure 1.: Distribution of discriminants in P.

3. Further Investigation

With our work on the original problem essentially completed, we turned to consid-
ering what happens if we expand the domain on the coefficients. The advantage of
technology provides is that we are free to change almost any parameter of the problem
and have it assist us in collecting data. We stayed with the original technologies used
in the initial investigation.

C # elements in P # factorable in P Percentage
{n ∈ Z : |n| ≤ 11 ∧ n 6= 0} 10,648 1084 10.18%
{n ∈ Z : |n| ≤ 12 ∧ n 6= 0} 13,824 1404 10.16%
{n ∈ Z : |n| ≤ 13 ∧ n 6= 0} 17,576 1640 9.33%
{n ∈ Z : |n| ≤ 14 ∧ n 6= 0} 21,952 1972 8.98%
{n ∈ Z : |n| ≤ 15 ∧ n 6= 0} 27,000 2344 8.68%
{n ∈ Z : |n| ≤ 20 ∧ n 6= 0} 64,000 4628 7.23%
{n ∈ Z : |n| ≤ 25 ∧ n 6= 0} 125,000 7800 6.24%
{n ∈ Z : |n| ≤ 30 ∧ n 6= 0} 216,000 12,076 5.59%

Table 2.: Number of factorable polynomials in P over Z for varying criteria C

Table 2 shows the progression of factorable polynomials as we increase the bounds
on the coefficients. At first glance it may be surprising that the net percent of factorable
polynomials drops as we increase n. However, seeing that the number of possible poly-
nomials is increasing as a function of x3, while the number of factorable polynomials
gained does not, sheds some light on this.



Figure 2 shows the distribution of discriminates for n = 30 and continues to support
our arguments regarding their distribution.

4. Conclusion

Mathematical curiosity can lurk anywhere. The use of technology allows one to inves-
tigate and pursue that curiosity efficiently and effectively. While the backdrop of this
investigation was quadratic factoring, it was the behavior of how those factors result
that was interesting and not necessarily the factors themselves. The use of technology,
along with the right amount of mathematical sophistication provided an investigation
that cut across mathematical technologies and ideas. It is our hope that technology
can continue to be a conduit for these types of investigations.
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