HOMEWORK 1: OUR FIRST EXAMPLE

MIKE SORICE

QUESTIONS

Exercise 1. A natural number, $m \in \mathbb{N}$, is *divisible* by $a \in \mathbb{N}$ if there is a number $d \in \mathbb{N}$ so that $da = m$. Consider the following statement:

- If m is divisible by six, then it is divisible by three.
- (1) Give a direct proof of this statement.

Proof. Given
$$
6|m
$$
, by definition, $\exists d \in \mathbb{N}$ s.t. $m = 6d = 3(2d)$.
 $\therefore \exists d' \in \mathbb{N}$ s.t. $m = 3d'$, namely $d' = 2d$.

 \Box

(2) Give the contrapositive of the statement.

If m is not divisible by 3, then it is not divisible by 6.

(3) Give a proof by contrapositive of the statement.

Proof. Suppose $3/m$. Then by definition, $\exists d \in \mathbb{N}$ s.t. $m = 3d$, i.e. $\forall d \in N, m \neq 3d$. A fortiori, there is no even natural number $2d'$ such that $m =$ $3(2d') = 6d'$ for $d' \in \mathbb{N}$. \therefore 6/m.

(4) Give a proof by contradiction of the statement.

Proof. Given $6|m$, suppose for contradiction $3/m$. $6|m \Rightarrow \exists d \in \mathbb{N} \text{ s.t. } m = 6d = 3(2d), \text{ but } d \in \mathbb{N} \Rightarrow 2d \in N.$ $\therefore \exists 2d = d' \in \mathbb{N} \text{ s.t. } m = 3d'.$ ∴ 3|m by definition. \Rightarrow □

Exercise 2 (Hungerford, 1.1.8). Use the Division Algorithm to show that every odd integer is either of the form $4k+1$ or of the form $4k+3$ for some integer k.

Proof. Let z be some odd integer.

By the division algorithm, $\exists !(q, r) \in \mathbb{Z}^2$ with $0 \leq r < 2$ s.t. $z = 2q + r$. Since z is odd, by definition, $2/z \Rightarrow r \neq 0 \Rightarrow r = 1$ so that $z = 2q + 1$. q being an integer, $\exists! (k, l) \in \mathbb{Z}^2$ with $0 \leq l < 2$ s.t. $q = 2k + l$ by the division algorithm.

l is either 0 (if q is even) or 1 (if q is odd.)

$$
\therefore z = 2(2k+l) + 1 = 4k + 2l + 1 = \begin{cases} 4k+1, & l = 0 \\ 4k+3, & l = 1 \end{cases}
$$

Exercise 3. Suppose that $a|c$ and $b|c$. Show that it is not necessarily true that $ab|c$, but that it is true if $(a, b) = 1$.

It is not the case that $a|c \wedge b|c \Rightarrow ab|c$.

Proof. Let
$$
a = b = c = 2
$$
. 2|2 and 2|2, yet $2 \cdot 2 = 4/2$.

However, is is the case that $a|c \wedge b|c \wedge (a, b) = 1 \Rightarrow ab|c$.

Proof. Suppose $a|c \wedge b|c \wedge (a, b) = 1$. $a|c \Rightarrow c = ma$ for some $m \in \mathbb{Z}$ so that $b|c \Rightarrow b|ma$. As $b|ma \wedge (a, b) = 1$, $b|m$ by theorem 1.4 so that $\exists n \in \mathbb{Z}$ s.t. $m = bn$. ∴ $c = nab \Rightarrow ab | c$ by definition. $□$

Exercise 4 (Hungerford, 1.3.21). Suppose that $c^2 = ab$ and $(a, b) = 1$. Use the Fundamental Theorem of Arithmetic to show that a and b must be squares. Then explain why the assumption $(a, b) = 1$ is necessary.

Proof. We require $a, b > 0$ as otherwise the statement to prove holds for, for example, $a = -1, b = -4, c = 2$ (as $-1 \cdot -4 = 4 = 2^2 \wedge (-1, -4) = 1$.) though -1 and -4 are not squares.

Consider the case $c = 0$. Then $ab = c^2 = 0$ entails that at least one of a or b is 0, so that $(a, b) = 1$ and $a, b > 0$ require that the other is 1. $0 = 0²$ and $1 = 1^2$ are squares.

Consider $c \neq 0 \Rightarrow c^2 > 0$. If one of a, b is $1 = 1^2$, then the other is necessarily c^2 , a square.

It remains to consider the case $c \neq 0 \land a, b > 1$. Given $a, b > 1$, by the F.T.A., there are unique positive primes $P = \{p_i\}_{i=1}^l$ and $Q = \{q_i\}_{i=1}^m$ such that $a = \prod P$ and $b = \prod Q$.

Further, by the F.T.A., there are unique (up to sign) primes $R = \{r_i\}_{i=1}^n$ $i=1$ such that $c = \prod R \Rightarrow c^2 = \prod^n$ r_i^2 .

 $i=1$ $\forall p \in P, p | a \text{ as } a = \prod P, \text{ so } p | ab \Rightarrow p | c \Rightarrow p | \prod R.$

∴ as p is prime by hypothesis, $\forall p \in P, p|r$ for some $r \in R$ by corollary 1.6.

r being prime and $p > 1$ by hypothesis, $p|r \Rightarrow p = r$ by corollary 1.6. ∴ $\forall p \in P, \exists r \in R \text{ s.t. } p = r.$

Similarly, $\forall q \in Q, \exists r \in R \text{ s.t. } q = r.$

Now, $\forall p \in P, p \notin Q$ as otherwise a and b would share at least $p > 1$ as a divisor, but $(a, b) = 1$. Similarly, $\forall q \in Q, q \notin P$ so that $P \cap Q = \emptyset$.

Thus, as \prod $i=1$ $nr_i^2 = \prod P \prod Q$, $\forall r \in R$, $r^2 \mid \prod P \prod Q \Rightarrow r \mid \prod P \prod Q$.

As $\prod P \prod Q$ is a product of primes and r is prime by hypothesis, $\exists s \in \Omega$ $P \cup Q$ s.t. r|s by corollary 1.6. Further, s and r being prime, $s = \pm r$.

 $P \cap Q = \emptyset$, so each $r \in R$, |r| appears in exactly one of P or Q.

Suppose $|r| \in P$. Then a can be divided by $|r|$ twice as $ab = c^2$ and $r^2|c^2$. Therefore P contains |r| twice for each $r \in R$. Without loss of generality, let $|r_i| \in P$ for $i \in \{1, ..., \frac{l}{2}\}$ $\frac{l}{2}$ (so that $|r_i| \in Q$ for $i \in \{\frac{l}{2} + 1, ..., n\}$) and $|r_i| \leq |r_{i+1}|$ for $i \in \{1, ..., n-1\}$. Then $a = \prod_{i=1}^{l}$ $i=1$ $p_i =$ l/ \prod 2 $i=1$ $r_i^2 =$ \int Π 2 $i=1$ $|r_i|$ \setminus^2 , which is a square.

Similarly, for
$$
|r_i| \in Q
$$
 for $i \in \{\frac{l}{2} + 1, ..., n\}$, $b = \left(\prod_{i=l/2+1}^n |r_i|\right)^2$, which is also a square.

also a square.

As suggested in the above proof, the result requires that $(a, b) = 1$ as otherwise a factor of c might divide both a and b , so that they could multiply to a square (i.e. a product of squares) without being squares themselves. Consider, for example, $2 \cdot 2 = 4 = 2^2$. Neither a nor b is a square, yet since they share a common factor (2) , they can multiply to produce a square (4) .

Exercise 5 (Hungerford, 1.3.26). Show that, for any $n \in \mathbb{N}$, there exists a list of n consecutive composite integers. Try starting your list with

$$
(n+1)! + 2.
$$

Proof. For $n = 0$, the claim is vacuously true.

For $n = 1$, the single integer $(1 + 1)! + 2 = 4$, being composite $(4 = 2^2)$ will do.

Suppose $n > 1$ then. Consider $(n + 1)! + m = \prod_{n=1}^{n+1}$ $i=1$ $i + m$ for $m \in \mathbb{N} \wedge 2 \leq$ $m \leq n+1$:

$$
(n+1)! + m = \prod_{i=1}^{n+1} i + m = m \left(1 + \frac{1}{m} \prod_{i=2}^{n+1} i \right) = m \left(1 + \prod_{i \in \{1, 2, \ldots, n+1\} - \{m\}} i \right).
$$

Now, \prod i∈{1,2,...,n+1}−{m} $i = \frac{(n+1)!}{m}$ $\frac{+1!}{m}$, being a product of integers, is an integer so that $m|[(n+1)!+m]$ so that $(n+1)!+m$ is composite by definition.

 \Box

4 MIKE SORICE

As the above holds for $m \in \mathbb{N}, 2 \le m \le n + 1$, it produces a set of n consecutive positive integers, $\{(n+1)! + 2, (n+1)! + 3, ..., (n+1)! + n+1\}$ all of which are composite as $2|[(n+1)! + 2], 3|[(n+1)! + 3], etc.$

 \Box

Exercise 6. Suppose c and b are natural numbers and $c > b > 0$. Show that there exists a natural number r so that $b|(c - r)$ and that if we require $0 \leq r < b$, then this r is unique.

Proof. $b, c \in \mathbb{N} \Rightarrow b, c \in \mathbb{Z}$ as $\mathbb{N} \subset \mathbb{Z}$. ∴ $\exists !(q, r) \in \mathbb{Z}^2$ s.t. $c = bq + r \wedge 0 \le r < b$ by the division algorithm. $r \in \mathbb{Z} \wedge 0 \leq r \Rightarrow r \in \mathbb{N}.$ $\therefore c - r = bq \Rightarrow b|(c - r).$ $c - r > 0$ as $r < b < c$ by hypothesis, and $c - r = bq \Rightarrow bq > 0$. $b > 0$ as well by hypothesis, so $q > 0$. $q \in \mathbb{Z} \wedge q > 0 \Rightarrow q \in \mathbb{N}$.

