HOMEWORK 1: OUR FIRST EXAMPLE

MIKE SORICE

QUESTIONS

Exercise 1. A natural number, $m \in \mathbb{N}$, is *divisible* by $a \in \mathbb{N}$ if there is a number $d \in \mathbb{N}$ so that da = m. Consider the following statement:

- If m is divisible by six, then it is divisible by three.
- (1) Give a direct proof of this statement.

Proof. Given 6|m, by definition, $\exists d \in \mathbb{N}$ s.t. m = 6d = 3(2d). $\therefore \exists d' \in \mathbb{N}$ s.t. m = 3d', namely d' = 2d.

(2) Give the contrapositive of the statement.

If m is not divisible by 3, then it is not divisible by 6.

(3) Give a proof by contrapositive of the statement.

Proof. Suppose $3 \not\mid m$. Then by definition, $\not\exists d \in \mathbb{N}$ s.t. m = 3d, i.e. $\forall d \in N, m \neq 3d$. A fortiori, there is no even natural number 2d' such that m = 3(2d') = 6d' for $d' \in \mathbb{N}$. ∴ $6 \not\mid m$.

(4) Give a proof by contradiction of the statement.

Proof. Given 6|m, suppose for contradiction $3 \not m$. $6|m \Rightarrow \exists d \in \mathbb{N} \text{ s.t. } m = 6d = 3(2d), \text{ but } d \in \mathbb{N} \Rightarrow 2d \in N.$ $\therefore \exists 2d = d' \in \mathbb{N} \text{ s.t. } m = 3d'.$ $\therefore 3|m \text{ by definition. } \Longrightarrow$

Exercise 2 (Hungerford, 1.1.8). Use the Division Algorithm to show that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k.

Proof. Let z be some odd integer.

By the division algorithm, $\exists !(q,r) \in \mathbb{Z}^2$ with $0 \le r < 2$ s.t. z = 2q + r. Since z is odd, by definition, $2 \not| z \Rightarrow r \ne 0 \Rightarrow r = 1$ so that z = 2q + 1. q being an integer, $\exists !(k,l) \in \mathbb{Z}^2$ with $0 \le l < 2$ s.t. q = 2k + l by the division algorithm.

l is either 0 (if q is even) or 1 (if q is odd.)

$$\therefore z = 2(2k+l) + 1 = 4k + 2l + 1 = \begin{cases} 4k+1, & l = 0\\ 4k+3, & l = 1 \end{cases}$$

Exercise 3. Suppose that a|c and b|c. Show that it is not necessarily true that ab|c, but that it is true if (a, b) = 1.

It is not the case that $a|c \wedge b|c \Rightarrow ab|c$.

Proof. Let
$$a = b = c = 2$$
. 2|2 and 2|2, yet $2 \cdot 2 = 4/2$.

However, is is the case that $a|c \wedge b|c \wedge (a,b) = 1 \Rightarrow ab|c$.

Proof. Suppose $a|c \wedge b|c \wedge (a, b) = 1$. $a|c \Rightarrow c = ma$ for some $m \in \mathbb{Z}$ so that $b|c \Rightarrow b|ma$. As $b|ma \wedge (a, b) = 1$, b|m by theorem 1.4 so that $\exists n \in \mathbb{Z}$ s.t. m = bn. $\therefore c = nab \Rightarrow ab|c$ by definition.

Exercise 4 (Hungerford, 1.3.21). Suppose that $c^2 = ab$ and (a, b) = 1. Use the Fundamental Theorem of Arithmetic to show that a and b must be squares. Then explain why the assumption (a, b) = 1 is necessary.

Proof. We require a, b > 0 as otherwise the statement to prove holds for, for example, a = -1, b = -4, c = 2 (as $-1 \cdot -4 = 4 = 2^2 \land (-1, -4) = 1$,) though -1 and -4 are not squares.

Consider the case c = 0. Then $ab = c^2 = 0$ entails that at least one of a or b is 0, so that (a, b) = 1 and a, b > 0 require that the other is 1. $0 = 0^2$ and $1 = 1^2$ are squares.

Consider $c \neq 0 \Rightarrow c^2 > 0$. If one of a, b is $1 = 1^2$, then the other is necessarily c^2 , a square.

It remains to consider the case $c \neq 0 \land a, b > 1$. Given a, b > 1, by the F.T.A., there are unique positive primes $P = \{p_i\}_{i=1}^l$ and $Q = \{q_i\}_{i=1}^m$ such that $a = \prod P$ and $b = \prod Q$.

Further, by the F.T.A., there are unique (up to sign) primes $R = \{r_i\}_{i=1}^n$ such that $c = \prod R \Rightarrow c^2 = \prod_{i=1}^n r_i^2$. $\forall p \in P, p | a \text{ as } a = \prod P, \text{ so } p | ab \Rightarrow p | c \Rightarrow p | \prod R.$

 \therefore as p is prime by hypothesis, $\forall p \in P, p | r$ for some $r \in R$ by corollary 1.6.

r being prime and p > 1 by hypothesis, $p|r \Rightarrow p = r$ by corollary 1.6. $\therefore \forall p \in P, \exists r \in R \text{ s.t. } p = r.$

Similarly, $\forall q \in Q, \exists r \in R \text{ s.t. } q = r.$

Now, $\forall p \in P, p \notin Q$ as otherwise a and b would share at least p > 1 as a divisor, but (a, b) = 1. Similarly, $\forall q \in Q, q \notin P$ so that $P \cap Q = \emptyset$. Thus, as $\prod_{i=1}^{n} nr_i^2 = \prod P \prod Q, \forall r \in R, r^2 | \prod P \prod Q \Rightarrow r | \prod P \prod Q$.

As $\prod P \prod^{r-1} Q$ is a product of primes and r is prime by hypothesis, $\exists s \in$ $P \cup Q$ s.t. r|s by corollary 1.6. Further, s and r being prime, $s = \pm r$.

 $P \cap Q = \emptyset$, so each $r \in R$, |r| appears in exactly one of P or Q.

Suppose $|r| \in P$. Then a can be divided by |r| twice as $ab = c^2$ and $r^2|c^2$. Therefore P contains |r| twice for each $r \in R$. Without loss of generality, let $|r_i| \in P$ for $i \in \{1, ..., \frac{l}{2}\}$ (so that $|r_i| \in Q$ for $i \in \{\frac{l}{2} + 1, ..., n\}$) and $|r_i| \le |r_{i+1}|$ for $i \in \{1, ..., n-1\}$. Then $a = \prod_{i=1}^l p_i = \prod_{i=1}^{l/2} r_i^2 = \left(\prod_{i=1}^{l/2} |r_i|\right)^2$, which is a square.

Similarly, for
$$|r_i| \in Q$$
 for $i \in \left\{\frac{l}{2} + 1, ..., n\right\}$, $b = \left(\prod_{i=l/2+1}^n |r_i|\right)^2$, which is also a square

also a square.

As suggested in the above proof, the result requires that (a, b) = 1 as otherwise a factor of c might divide both a and b, so that they could multiply to a square (i.e. a product of squares) without being squares themselves. Consider, for example, $2 \cdot 2 = 4 = 2^2$. Neither a nor b is a square, yet since they share a common factor (2,) they can multiply to produce a square (4.)

Exercise 5 (Hungerford, 1.3.26). Show that, for any $n \in \mathbb{N}$, there exists a list of n consecutive composite integers. Try starting your list with

$$(n+1)!+2.$$

Proof. For n = 0, the claim is vacuously true.

For n = 1, the single integer (1 + 1)! + 2 = 4, being composite $(4 = 2^2)$ will do.

Suppose n > 1 then. Consider $(n+1)! + m = \prod_{i=1}^{n+1} i + m$ for $m \in \mathbb{N} \land 2 \leq 1$ $m \leq n+1$:

$$(n+1)! + m = \prod_{i=1}^{n+1} i + m = m \left(1 + \frac{1}{m} \prod_{i=2}^{n+1} i \right) = m \left(1 + \prod_{i \in \{1,2,\dots,n+1\} - \{m\}} i \right).$$

Now, $\prod_{i \in \{1,2,\dots,n+1\}-\{m\}} i = \frac{(n+1)!}{m}$, being a product of integers, is an integer so that $m \mid [(n+1)! + m]$ so that (n+1)! + m is composite by definition.

MIKE SORICE

As the above holds for $m \in \mathbb{N}, 2 \le m \le n+1$, it produces a set of n consecutive positive integers, $\{(n+1)!+2, (n+1)!+3, ..., (n+1)!+n+1\}$ all of which are composite as 2|[(n+1)!+2], 3|[(n+1)!+3], etc.

Exercise 6. Suppose c and b are natural numbers and c > b > 0. Show that there exists a natural number r so that b|(c-r) and that if we require $0 \le r < b$, then this r is unique.

Proof. $b, c \in \mathbb{N} \Rightarrow b, c \in \mathbb{Z}$ as $\mathbb{N} \subset \mathbb{Z}$. $\therefore \exists ! (q, r) \in \mathbb{Z}^2$ s.t. $c = bq + r \land 0 \leq r < b$ by the division algorithm. $r \in \mathbb{Z} \land 0 \leq r \Rightarrow r \in \mathbb{N}$. $\therefore c - r = bq \Rightarrow b | (c - r)$. c - r > 0 as r < b < c by hypothesis, and $c - r = bq \Rightarrow bq > 0$. b > 0 as well by hypothesis, so q > 0. $q \in \mathbb{Z} \land q > 0 \Rightarrow q \in \mathbb{N}$.