HOMEWORK 1: OUR FIRST EXAMPLE

MIKE SORICE

QUESTIONS

Exercise 1. A natural number, m € N, is divisible by a € N if there is a
number d € N so that da = m. Consider the following statement:

If m is divisible by six, then it is divisible by three.
(1) Give a direct proof of this statement.

Proof. Given 6|m, by definition, 3d € N s.t. m = 6d = 3(2d).
. 3d" € Ns.t. m = 3d’, namely d' = 2d.

(2) Give the contrapositive of the statement.
If m is not divisible by 3, then it is not divisible by 6.
(3) Give a proof by contrapositive of the statement.

Proof. Suppose 3 fm.

Then by definition, Ad € N s.t. m = 3d, i.e. Vd € N,m # 3d.

A fortiori, there is no even natural number 2d’ such that m =
3(2d') = 6d’ for d’ € N.

o6 fm. O

(4) Give a proof by contradiction of the statement.

Proof. Given 6|m, suppose for contradiction 3 fm.
6/m = 3d € N s.t. m =6d =3(2d), but d € N= 2d € N.
s.32d=d € Nst. m=3d.
.. 3|m by definition. =< O

Exercise 2 (Hungerford, 1.1.8). Use the Division Algorithm to show that
every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some
integer k.

Proof. Let z be some odd integer.
By the division algorithm, 3!(¢,r) € Z? with 0 <r < 2 s.t. z =2¢ + 1.
Since z is odd, by definition, 2z = r # 0 = r = 1 so that z = 2¢ + 1.
q being an integer, 3!(k,l) € Z% with 0 <[ < 2 s.t. ¢ = 2k + [ by the
division algorithm.
[ is either O (if ¢ is even) or 1 (if ¢ is odd.)
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dk+1, 1=0

2= 2%+ D) 41— Ak 2+ 1=
@ =22k +1)+ e {4k+3, I=1

Exercise 3. Suppose that a|c and blc. Show that it is not necessarily true
that ablc, but that it is true if (a,b) = 1.
It is not the case that a|c A blc = abc.

Proof. Let a =b=c=2. 2|2 and 2|2, yet 2-2 = 42. O
However, is is the case that a|c A blc A (a,b) = 1 = ablc.

Proof. Suppose alc A blc A (a,b) = 1.
alc = ¢ = ma for some m € Z so that b|c = bjma.
As blma A (a,b) = 1, bjm by theorem 1.4 so that In € Z s.t. m = bn.
.. ¢ =nab = ablc by definition. O

Exercise 4 (Hungerford, 1.3.21). Suppose that ¢> = ab and (a,b) = 1.
Use the Fundamental Theorem of Arithmetic to show that a and b must be
squares. Then explain why the assumption (a,b) = 1 is necessary.

Proof. We require a,b > 0 as otherwise the statement to prove holds for,
for example, a = —1,b = —4,c =2 (as —1- -4 =4 =22 A (-1,-4) =1,
though —1 and —4 are not squares.

Consider the case ¢ = 0. Then ab = ¢ = 0 entails that at least one of a
or bis 0, so that (a,b) = 1 and a,b > 0 require that the other is 1. 0 = 02
and 1 = 12 are squares.

Consider ¢ # 0 = ¢ > 0. If one of a,b is 1 = 12, then the other is
necessarily ¢2, a square.

It remains to consider the case ¢ # 0 A a,b > 1. Given a,b > 1, by the
F.T.A., there are unique positive primes P = {pi}ézl and Q = {¢;};~, such
that a = [[P and b =[] Q.

Further, by the F.T.A., there are unique (up to sign) primes R = {r;};_,

n
such that c=[[R = ¢ = [ r?.

=1
Vp € P,pla as a =[] P, so plab = p|c = p|[[ R.
*. as p is prime by hypothesis, Vp € P, p|r for some r € R by corollary
1.6.
r being prime and p > 1 by hypothesis, p|r = p = r by corollary 1.6.
S Vpe P dreRst. p=r.
Similarly, Vg € Q,3r € Rs.t. g=r.
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Now, Vp € P,p € @ as otherwise a and b would share at least p > 1 as a
divisor, but (a,b) = 1. Similarly, Vg € Q,q & P so that PN Q = 0.

Thus, as Hm" =TIPIIQ, vr € R, |TIPT]Q = r|[IPI] Q-

As HPH Q is a product of primes and r is prime by hypothesis, 3s €
P U@ s.t. r|s by corollary 1.6. Further, s and r being prime, s = +r.

PN@Q =0, soeach r € R, |r| appears in exactly one of P or Q.

Suppose |r| € P. Then a can be divided by |r| twice as ab = ¢? and 72|c?.
Therefore P contains |r| twice for each r € R. Without loss of generality,
let |r;| € P for ¢ € {1,...,%} (so that |r;| € Q for i € {é + 1,...,n}) and

. 1/2 1/2 2
Iri] < |riga1| fori € {1,..,n—1}. Thena = [[p; = [[72 = (11 Inl| ,
i=1 i=1

i=1
which is a square.

2
n
Similarly, for |r;| € @ for i € {é +1,..,n}, b= [T |7l ] , which is
i=l1/2+1
also a square.
O

As suggested in the above proof, the result requires that (a,b) = 1 as
otherwise a factor of ¢ might divide both a and b, so that they could multiply
to a square (i.e. a product of squares) without being squares themselves.
Consider, for example, 2 -2 = 4 = 22. Neither a nor b is a square, yet since
they share a common factor (2,) they can multiply to produce a square (4.)

Exercise 5 (Hungerford, 1.3.26). Show that, for any n € N, there exists a
list of n consecutive composite integers. Try starting your list with

(n+ 1)+ 2.

Proof. For n = 0, the claim is vacuously true.
For n = 1, the single integer (1 + 1)! + 2 = 4, being composite (4 = 2?)
will do.
n+1
Suppose n > 1 then. Consider (n+ 1)l +m = [[i+mform e NA2 <
i=1
m<n-+1:

n+1 1 n+1
(n+1)!+m:Hi+m:m<1+mHi>:m 1+ H i
i=1 =2 1€{1,2,....n+1}—{m}
Now, I 1= (”+1) , being a product of integers, is an integer
i€{1,2,...,n+1}—{m}
so that m|[(n + 1)! + m] so that (n + 1)! + m is composite by definition.
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As the above holds for m € N,2 < m < n + 1, it produces a set of n con-
secutive positive integers, {(n + 1)! +2,(n + 1)! 4+ 3, ..., (n + D)+ n+ 1} all
of which are composite as 2| [(n + 1)! +2],3|[(n + 1)! + 3], etc.

[l

Exercise 6. Suppose ¢ and b are natural numbers and ¢ > b > 0. Show
that there exists a natural number r so that b|(c — r) and that if we require
0 < r < b, then this r is unique.

Proof. b,c e N=b,c€ Z as N C Z.
- A(q,r) € Z% s.t. ¢ =bg+1r A0 <r <b by the division algorithm.
reZN0<r=relN.
se—r=0bg=bl(c—r).
c—1r>0asr <b< cby hypothesis, and ¢ —r =bg = bg > 0. b > 0 as
well by hypothesis,so ¢ >0. g€ ZAqg>0=qg€&N.
O



