
Mike Sorice College Geometry II
Spring 2019 Test 1

1.

Proposition. Given �ABCD, [(AC∩BD = {E})∧(BE ∼= CE)∧(AE ∼= DE)]⇒
(∠BAD ∼= ∠CDA).

Proof. ∠CED ∼= ∠AEB as vertical angles.

4AEB ∼= 4CED by S.A.S. (AE ∼= DE by hypothesis, ∠AEB ∼= ∠DEC by
previous step, and BE ∼= CE by hypothesis.)

∴ AB ∼= CD as corresponding parts of congruent triangles.

[(AE ∼= DE)∧ (BE ∼= CE)∧ (A∗E ∗C)∧ (B ∗E ∗D)]⇒ (AC ∼= BD) by segment
addition.

∴ 4ABD ∼= 4DCA by S.S.S. (AD is a common side, AB ∼= CD by previous step,
AC ∼= BD by previous step.)

∴ ∠BAD ∼= ∠ADC as corresponding parts of congruent triangles.

Figure 1: Quadrilateral whose diagonals bisect each other.

2.
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Proposition. Given �ABCD, [(AC∩BD = {E})∧(AC ∼= BD)∧(AB ∼= CD)]⇒
[(AE ∼= DE) ∧ (BE ∼= CE)].

Proof. 4ADC ∼= 4DAB by S.S.S. (AD is a common side, AB ∼= DC by hypoth-
esis, and AC ∼= BD by hypothesis.)

∴ ∠CAD ∼= ∠BDA as corresponding parts of congruent triangles.

∴ 4ADE is isosceles, having congruent base angles, so it also has congruent sides
opposite, i.e. AE ∼= DE.

Similarly, 4ABC ∼= 4DCB by S.S.S. (BC is a common side, AB ∼= CD by
hypothesis, and AC ∼= BD by hypothesis.)

∴ ∠ACB ∼= ∠CBD as corresponding parts of congruent triangles.

∴ 4BCE is isosceles, having congruent base angles, so it also has congruent sides
opposite by theorem, i.e. BE ∼= CE.

Figure 2: Quadrilateral whose diagonals and a pair of opposite sides are congruent.

3.

Proposition. Given �ABCD, [(AC∩BD = {E})∧(AB ∼= BC)∧(AD ∼= CD)]⇒
[(AE ∼= CE) ∧ (BD ⊥ AC)].
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Proof. 4ABD ∼= 4CBD by S.S.S. (AB ∼= BC by hypothesis, BD is a common
side, and AD ∼= CD by hypothesis.)

∴ ∠ABD = ∠ABE ∼= ∠CBD = ∠CBE as corresponding parts of congruent
angles and as B ∗ E ∗D.

∴ 4ABE ∼= 4CBE by S.A.S. (AB ∼= BC by hypothesis, ∠ABE ∼= ∠CBE by
previous step, and BE is a common side.)

∴ AE ∼= CE as corresponding parts of congruent triangles. //

Likewise, ∠AEC ∼= ∠BEC.

∠AEC supplements ∠BEC by definition.

∴ ∠AEC and ∠BEC are right angles by definition (congruent to supplement.)

∴ AC ⊥ BD by definition (segments form a right angle.)

Figure 3: Quadrilateral with two pairs of congruent adjacent sides.

4.

Proposition. Given �ABCD, [(AC ⊥ BD) ∧ (AB ∼= BC)]⇒ (AD ∼= CD).

Proof. ∠AEB,∠BEC,∠CED, and ∠AED are all right angles by definition of
perpendicular segments.

∴ ∠AEB ∼= ∠BEC ∼= ∠CED ∼= ∠AED as all right angles are congruent.

4ABE ∼= 4CBE by H.L.1 (∠AEB and ∠BEC are both right angles by previ-
ous step, so AB and BC are hypotenuses of right triangles 4ABE and 4CBE,
respectively; AB ∼= BC by hypothesis; and BE is a common leg.)

1H.L. congruence is Greenberg’s Proposition 4.6. We’ll also prove it here in Problem 6.

3



∴ AE ∼= CE as corresponding parts of congruent triangles.

∴ 4ADE ∼= 4CDE by S.A.S. (AE ∼= CE by previous step, ∠AED ∼= ∠CED by
previous step, and DE is a common side.)

∴ AD ∼= CD as corresponding parts of congruent triangles.

Figure 4: Quadrilateral with perpendicular diagonals and pair of congruent adjacent
sides.

5. Given 4ABC with AB = c > AC = b > BC = a, ∠C◦ = γ > e, {X} =
◦(A,AC) ∩ AB,{Y } = ◦(B,BC) ∩ AB, CX = x, CY = y, and XY = z...

(a)

Proposition. 4AXY is acute.

Proof. By construction, AX ∼= AC – both are radii of ◦(A,AC).

∴ 4ACX is isosceles with legs AC and AX.

∴ ∠ACX ∼= ∠AXC
Similarly, BC ∼= BY ⇒ ∠BCY ∼= ∠BY C.

Consider 4ACX. Its exterior angle at X is ∠BCX, which supplements
∠AXC. Therefore, by the exterior angle theorem, remote interior ∠ACX <
∠BXC.

But ∠ACX ∼= ∠AXC by previous step, so ∠AXC is less than its complement.

∴ ∠AXC is acute by definition.

A similar application of the E.A.T. considering ∠AY C exterior to 4BCY at
Y gives ∠BY C < ∠AY C ⇒ ∠BY C is acute.
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∠XCY is within ∠ACX, so ∠XCY < ∠ACX by definition. ∴ ∠XCY is
also acute (an angle less than an acute angle is also acute.)2

All angles of 4CXY being therefore acute, 4CXY is an acute triangle by
definition.

(b)

Proposition. z < x.

Proof. Since ∠XCY is within ∠ACX, ∠XCY < ∠ACX by definition. How-
ever, ∠ACX ∼= ∠AXC by previous step, so ∠XCY < ∠ACX.

The longer side of a triangle being opposite the larger angle, XY < CY ⇒
XY = z < y = CY (Greenberg’s Proposition 4.5.)

Proposition. z < y.

Proof. Similarly, ∠XCY < ∠BY C ⇒ z < x.

Proposition. z = a+ b− c.

Proof. By construction, c = a+ b− z.

Subtracting c from and adding z to both sides yields: c−c+z = z = a+b−c =
a+ b− z + z − c.

Figure 5: Obtuse scalene triangle with smaller inner triangle formed by laying off shorter
legs on longest.

2It would work equally well to note that ∠XCY is also within and therefore smaller than acute
∠BCY .
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(c)

Proposition. y > x.

Proof by G. Galperin. (-3) By definition, 4ACX is isosceles with leg b and
4BCX is isosceles with leg a.
Thus, ∠BCY ∼= ∠BY C and both are acute (as otherwise

∑
(4BCY ) >

2e, contradicting the Saccheri-Legendre theorem.)
Similarly, ∠ACX ∼= ∠AXC and both are acute.

(-2) Further, since a + b > c = AB by the triangle inequality on 4ABC,A ∗
Y ∗X ∗B (as exactly one of A ∗X ∗ Y ∗B,X = Y, or A ∗ Y ∗X ∗B but
if X = Y, a+ b = c and if A ∗X ∗ Y ∗B, a+ b < c.)

(-1) AC > BC ⇒ ∠B > ∠A ⇒ β > α as angles opposite larger sides are
larger.

(0) Drop a perpendicular from C to AB with foot H. Then exactly one of
H ∗ Y ∗XH = Y, Y ∗H ∗X,H = X, or Y ∗X ∗H.

Case 1 (H∗Y ∗X): Then ∠CYX is exterior to4CHY and thus ∠CYX >
∠CHY , but ∠CYX is acute by (-3). ⇒⇐

Case 2 (Y ∗X ∗H): Similarly, acute ∠CXY is remote to, and therefore
bigger than, right ∠CHX in 4CHX.⇒⇐

Case 3 (H = Y ): Then ∠CYX ∼= ∠CHX, but the former is acute by
(-3), while the latter is right by construction. ⇒⇐

Case 4 (H = X): Similarly, acute ∠CXY ∼= ∠CHY, a right angle. ⇒⇐

∴ Y ∗H ∗X.
(1) Lay off a copy of AH on −

−−→
HA, such that D ∈ −

−−→
HA and DH ∼= AH.

Then 4ACH ∼= 4DCH by side-angle-side congruence (CH is a shared
side, ∠AHC ∼= ∠DHC as both are right angles by construction at (0),
AH ∼= DH by construction.)
∴ CD = b and ∠HDC◦ = α by congruent triangles.

(2) Exactly one of H ∗D ∗B, D = B, or H ∗B ∗D by betweenness axioms.

Case 1 (D = B): CD ∼= BC ⇒ a = b, contradicting the hypothesis
b > a.⇒⇐

Case 2 (H ∗ D ∗ B): Then ∠HDC is an exterior angle of 4BCD, so
∠CDH > ∠HBC by the exterior angle theorem, i.e. α > β, contradicting
(-1). ⇒⇐

∴ H ∗B ∗D.

(3) By the exterior angle theorem on 4BCH,∠CBD > ∠CHB and, as the
latter is a right angle, ∠CBD is obtuse, i.e. ∠CBD◦ = γ > e.

(4) Lay off HX on
−−→
HA to create Z ∈

−−→
HA such that HZ ∼= HX. By be-

tweenness axioms, exactly one of Z ∗ Y ∗H, Y = Z, or Y ∗ Z ∗H.
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(5) 4CHZ ∼= 4CHX by side-angle-side congruence (CH is a common side,
∠CHZ ∼= ∠CHX as both are right angles by construction at (0), HX ∼=
HZ by construction at (4).) Therefore CZ ∼= CX by congruent triangles.

(6) AX = b by hypothesis.
AX = AH +HX since A ∗ Y ∗H ∗X ∗B by (0) and (-2).
DH ∼= AH by construction at (1).
HZ ∼= HX by construction at (4).
∴ AX = AH + HX = DH + HZ, but since Z ∗H ∗D by construction
at (4), DH +HZ = DZ.
∴ DZ ∼= AX and DZ = AX = b.

(7) BD +BC > CD by the triangle inequality on 4BCD.
BC ∼= BY by hypothesis, so BD +BY > CD.
AC = CD = DZ by (1) and (5).
∴ BD +BY > DZ

(8) Y ∗B ∗D by (1), so BD +BY = DY .
∴ DY > DZ by (7).

∴ Y ∗ Z ∗D. As Z ∈
−−→
HA by construction at (4) and Y ∗H ∗ Z by (0)

and (1), Y ∗ Z ∗H.

(9) ∴ HY > HZ.
HZ ∼= HX by construction at (4), so HY > HS.

(10) ∴ CY > CX by the same reasoning as (2).

Figure 6: Construct 4DCH ∼= 4ACH to show that 4CHZ ∼= 4CHY, so y > x.

6.

Proposition. Given 4ABC and 4A′B′C ′, {[∠C◦ = (∠C ′)◦ = e]∧ [BC = B′C ′ =
a] ∧ [AB = A′B′ = c]} ⇒ (4ABC ∼= 4A′B′C ′).

Proof by construction: Lay off B′′C ′′ ∼= B′C ′ on
−−→
BC starting at B so that C ′′ = C

(as BC ∼= B′C ′ by hypothesis, B′′C ′′ ∼= B′C ′ with B′′ = B by construction, and
congruent segments are unique on a ray, given a starting point, by congruence
axiom.)
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Lay off a copy of ∠C ′ at C ′′ to form ∠DB′′C ′′ such that D is on the side of
←→
BC

opposite A (this angle being unique by congruence axiom.)

A,C and D are collinear (AC and CD are both perpendicular to BC at C.)
Further, A ∗ C ∗D (by construction at previous step.)

Lay off a copy of C ′A′ on
−−−→
C ′′D′′ starting at C ′′ to form C ′′A′′ ∼= C ′A′.

A ∗ C ∗ A′′ as A′′ ∈
−−→
CD′′\{C} (by construction at previous step.)

∴ 4A′′B′′C ′′ ∼= 4A′B′C ′ by S.A.S. (A′′C ′′ ∼= A′C ′, ∠A′′C ′′B′′ ∼= ∠C ′, and B′′C ′′ ∼=
B′C ′, all by construction at previous steps.)

∴ A′′B′′ = A′′B ∼= A′B′ (as corresponding parts of congruent triangles) so ∼=
A′′B ∼= AB (by hypothesis and transitivity of congruence by axiom.)

∴ 4AA′′B is isosceles with legs AB ∼= A′′B. Thus ∠A ∼= ∠BA′′C by theorem
(isosceles triangles have congruent base angles.)

Then4ABC ∼= 4A′′BC by A.A.S. (∠ACB ∼= ∠A′′CB by construction at previous
step, ∠A ∼= ∠BA′′C by previous step, and BC is a common side; alternatively,
∠BCA ∼= ∠BCA′′ by construction previous step, ∠BA′′C ∼= ∠A by previous step,
and AB ∼= A′′B by construction at previous step.)

4A′′BC = 4A′′B′′C ′′ ∼= 4A′B′C ′ (by previous step) so 4A′B′C ′ ∼= 4ABC by
transitivity of congruence (congruence axiom.)

Figure 7: Construction proving HL convergence.

7.

Proposition. Given 4ABC with M the midpoint of AB, (∠C◦ = ∠A◦+∠B◦)⇒
(AB = 2CM)

Proof by construction. Given 4ABC with (∠C◦ = ∠A◦ + ∠B◦, lay off a copy of

∠A at C with
−→
CA as one side and the other side, except C itself, on B’s side of←→

CA, say
−−→
CD.
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As
−−→
AD over through C, it meets (AB) by Pasch’s theorem. Say {E} =

−−→
AD∩(AB).

Then 4ACE has congruent base angles ∠A and ∠ACE and is therefore isosceles
with AE ∼= CE by theorem (triangle with congruent base angles has opposite sides
congruent as well.)

∠ACE ∼= ∠A (by construction at previous step,) ∠ACB is comprised of ∠ACE
and ∠BCE (by construction at previous step,) and (∠C◦ = ∠A◦ + ∠B◦ by hy-
pothesis, so ∠BCE ∼= ∠B by angle subtraction.

Then 4BCE has congruent base angles ∠B and ∠BCE and is therefore isosceles
with BE ∼= CE by theorem (ibid.)

BE ∼= CE ∼= AE ⇒ AE ∼= BE so E is the midpoint of AB, which has the name
M by hypothesis.

Then CM ∼= AM and AB = AM ∪BM with AM ∼= BM gives AB = 2CM .

Figure 8: Triangle with largest angle whose measure is the sum of the measures of the
others has a shortest median half its longest side.

8. Given convex �ABCD with ∠A ∼= ∠D...

(a)

Proposition. (AB ∼= CD)⇒ (∠B ∼= ∠C)

Proof. Draw the diagonals AC and BD – these remain within �ABCD by
definition of convex.

4ADC ∼= 4DAB by S.A.S. (AD is a common side, ∠D ∼= ∠A by hypothesis,
AB ∼= CD by hypothesis.)
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∴ AC ∼= BD and ∠ACD ∼= ∠ABD as corresponding parts of congruent
figures.

∴ 4ABC ∼= 4DCB by S.S.S. (AB ∼= CD by hypothesis, BC is a common
side, AC ∼= BD by previous step.

∴ ∠ACB ∼= ∠CBD as corresponding parts of congruent figures.

∠ABC being comprised of ∠ABD and ∠CBD, and these latter being con-
gruent to ∠ACB and ∠ACD, constituents of ∠BCD, ∠ABC ∼= ∠BCD by
angle addition.

(b)

Proposition. (∠B ∼= ∠C)⇒ (AB ∼= CD)

Proof by construction: Construct p, the perpendicular bisector of AD. p
meets (AD) by definition (at its midpoint, say F ) and meets the interior
of the opposite side, (BC), as �ABCD is convex (via Pasch’s theorem on
4BFC, as p goes through F .) Call p ∩BC = {E}.
4AEF ∼= 4DEF by H.L. (AF ∼= DF as F is the midpoint of AD by con-
struction at previous step; ∠AFE is a right angle by construction at previous
step so ∠DFE is as well, by definition of right angle, since ∠DFE supple-
ments right ∠AFE; and EF is a common leg.)

∴ AE ∼= DE and ∠EAD ∼= ∠EDA as corresponding parts of congruent
figures.

Since ∠A = ∠BAD ∼= ∠ADC = ∠D by hypothesis, and since ∠A consists
of ∠BAE and ∠EAD whereas ∠D consists of ∠ADE and ∠CDE, with one
constituent each congruent by previous step, ∠BAE ∼= ∠CDE by angle sub-
straction.

∴ 4ABE ∼= 4DCE by A.A.S. (∠B ∼= ∠C by hypothesis, ∠BAE ∼= ∠CDE
by previous step, and Æ ∼= DE by previous step.)

∴ AB ∼= CD as corresponding parts of congruent figures.

(a) ...pair of congruent adjacent angles and
opposite sides.

(b) ...two pairs of congruent adjacent an-
gles.

Figure 9: Convex quadrilaterals with...

9.
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Proposition. Given 4ABC with CM a median, [δ(4ACM) = 2δ(4ABC)] ⇒
[
∑

(4ABC) =
∑

(4AMC) =
∑

(4BCM) = 180◦].

Proof. By construction, 4ACM is within 4ABC.

By previous theorem, defect is additive, so that δ(4ACM) ≤ δ(4ABC) (as the
latter is within the former by previous step.)

δ(4) ≥ 0◦ (Saccheri-Legendre theorem) so that δ(4ACM) = 2δ(4ABC) ⇒
δ(4ACM) ≥ δ(4ABC).

{[δ(4ACM) ≥ δ(4ABC)] ∧ [δ(4ACM) ≤ δ(4ABC)]} ⇒ [δ(4ACM) = 0◦].

∴ ∀4, δ(4)0◦ by previous theorem (Legendre’s.)

∴ ∀4,
∑

(4) = 180◦ by definition of defect (δ(4) = 180◦ −
∑

(4).)

Figure 10: Inner triangle has same defect at most.

10. (a)

Proposition. Given point D interior to 4ABC, AB +BC > AD + CD.

Proof. Consider
−−→
AD. Since D is interior to 4ABC and A is a vertex,

−−→
AD

meets (BC) by Pasch’s theorem. Say {E} =
−−→
AD ∩BC.

Then 4ACE is a triangle, so AC + CE > AE by the triangle inequality.

Likewise, 4BDE is a triangle, so BE +DE > BD.

Adding these inequalities yields: AC + CE +BE +DE > AE +BD.

But then BE + CE = BC, so we have: AC +BC +DE > AE +BD.

Subtracting DE from both sides yields: AC +BC > AE −DE +BD

However, AE = AD+DE, so we have AC +BC > AD+DE−DE+BD =
AD +BD.

11



(b)

Proposition. Given point D interior to 4ABC, ∠ADC > ∠ABC.

Proof. Consider
−−→
BD. Since D is interior to 4ABC and B is a vertex,

−−→
BD

meets (AC) by Pasch’s theorem. Say {F} =
−−→
BD ∩ AC.

Then ∠ADF is an exterior angle of 4ABD at D, so it is greater than the
remote interior angle ∠ABF by the exterior angle theorem.

Similarly, ∠CDF > ∠CBF .

As
−−→
DA ∗

−−→
DF ∗ (

−−→
DC and

−→
BA ∗

−−→
BF ∗

−−→
BC, ∠ADC > ∠ABC by angle addition,

given the previous two steps.

Figure 11: Inner triangle on same base has smaller perimeter and larger apex angle.

(c)

Proposition. Given 4ABC, (D,E ∈ (AC) s.t. AD ∼= CE)⇒ (AB+AC >
AD + AE).

Proof. Given 4ABC with (D,E ∈ (AC) s.t. AD ∼= CE, construct M ∈
(AC), the midpoint of AC.

By segment subtraction, AD ∼= CE ⇒ AE ∼= CD (they differ by the common
segment DE.)

Thus exactly one of D = E = M or D 6= E and M is the midpoint of DE as
well.

Case 3 (D = E = M): Construct B′ by doubling BM .

Connect B′ to C produces 4B′MC.

∠B′MC ∼= ∠AMB as vertical angles.

AM ∼= CM by definition of midpoint.

∴ 4ABM ∼= 4CB′M by S.A.S. (AM ∼= CM by construction at previous
step, ∠AMB ∼= ∠B′MC by previous step, BM ∼= B′M by construction at
previous step.)
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∴ AB ∼= B′C (as corresponding parts of congruent figures.)

Applying the triangle inequality to 4BB′C yields: BC +B′C > BB′.

By construction, BB′ = 2BM ⇒ BB′ = 2BM = BD + BE (BM = BD =
BE by hypothesis.)

B′C ∼= AB (previous step,) so B′C = AB.

∴ AB +BC > BD +BE

Case 4 (D 6= E; DM ∼= EM): Construct B′ by doubling BM .

Connect B′ to D producing 4B′DM .

∠AMB′ ∼= ∠CMB as vertical angles.

DM ∼= EM by construction (M is the midpoint of DE.)

BM ∼= B′M by construction at previous step.

∴ 4BME ∼= 4B′MD by S.A.S. (DM ∼= EM , ∠DMB′ ∼= ∠BME, BM ∼=
B′M .)

∴ B′D ∼= BE (congruent triangles.)

Similarly, connect B′ to A to produce 4AMB′.

AM ∼= CM by construction (M is the midpoint of AC.)

∴ 4AMB′ ∼= 4CMB by S.A.S. (AM ∼= CM , ∠AMB′ ∼= ∠BMC, BM ∼=
B′M .)

∴ AB′ ∼= BC (congruent triangles.)3

Consider 4ABB′ – it is of the same form as the triangle from 10. (a), so
apply the result of that part to yield: AB + AB′ > BD +B′D.

AB′ ∼= BC and B′D ∼= BE, so we have AB +BC > BD +BE.

(a) Case 1 – D = E. (b) Case 2 – D 6= E.

Figure 12: Inner triangle with same apex also has smaller perimeter.

3We can think of the result of the construction of these two triangles as the reflection of 4BMC

over
←−→
BM and

←→
AC. The naming of prime points in the figure reflects this concept.
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