
Mike Sorice College Geometry II
Spring 2019 Homework -1

Ch. 4, Ex. 17 (a) Suppose O 6∈ AB.

AM ∼= BM by definition of midpoint.

AO ∼= BO by definition of circle (both are radii of γ.)

OM ∼= OM by Congruence Axiom 2.

4AMO ∼= 4BMO by Proposition 3.22 (S.S.S. congruence.)

Therefore, ∠AMO ∼= ∠BMO as corresponding parts of congruent triangles.

∠AMO supplements ∠BMO by definition.

∴ ∠AMO and ∠BMO are right angles by definition. �

Figure 1: Radial segment through midpoint is perpendicular to (non-diameter) chord.

(b) Case 1 (AB is not a diameter of γ): Suppose O 6∈ AB as in part (a).

Then MO ⊥ AB by the result of part (a), so
←−→
MO ⊥ AB as well.

Further, as M is the midpoint of AB by construction,
←−→
MO bisects AB

by definition.

Therefore
←−→
MO is a perpendicular bisector of AB. Then

←−→
MO is the unique

perpendicular bisector of AB by Proposition 4.4 (b).

As O ∈
←−→
MO, the perpendicular bisector of AB passes through O. //

Case 2 (AB is a diameter of γ): Suppose on the other hand that O ∈
AB.
Then AO ∼= BO by definition of circle as both are radii of γ.
Therefore O is the midpoint of AB by definition.
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As the perpendicular bisector of AB bisects AB, it must therefore pass
through its midpoint, O. //

Therefore, in either case, the perpendicular bisector of any chord must pass
through the center of its circle. �

Ch. 4, Ex. 18 Proof of Thales’ theorem in Euclidean geometry Let ◦ABC be
a circle with ∠BAC the inscribed angle of a semi-circle of ◦ABC.

Then BC is a diameter of ◦ABC by definition of inscribed angle of semicircle.

Therefore AO ∼= BO ∼= CO as all are radii of ◦ABC.

Then 4ABO is isosceles, so ∠ABO ∼= ∠BAO by Proposition 3.10 (the base
angles of an isosceles triangle are congruent.) Let ∠ABO◦ = ∠BAO◦ = α.

Similarly, ∠ACO ∼= ∠CAO. Let ∠ACO◦ = ∠CAO◦ = β.

In Euclidean geometry, Euclid’s fifth postulate holds so that the sum of the
measures of the angles of any triangle is 180◦ (by Theorem 4.5 and Proposition
4.11.)

In particular, α + α + ∠AOB◦ = 180◦ and β + β + ∠AOC◦ = 180◦. Adding
these two equations yields 2α + 2β + ∠AOB◦ + ∠AOC◦ = 360◦ ⇒ α + β =
180◦ − ∠AOB◦+∠AOC◦

2
.

∠AOB supplements ∠AOC by definition, so ∠AOB◦ + ∠AOC◦ = 180◦ by
Theorem 4.3 (5) (measures of supplementary angles sum to 180◦.)

Therefore α + β = 180◦ − ∠AOB◦+∠AOC◦

2
= 180◦ − 180◦

2
= 90◦.

As α = ∠BAO◦ and β = ∠CAO◦, α + β = ∠BAC◦ = 90◦.

∴ ∠BAC is a right angle by Theorem 4.3 (1) (an angle is right if and only if
it measures 90◦.) �

Figure 2: Inscribed ∠BAC is a right angle by Thales’ theorem.
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Construction of non-defective triangle given Thales’ theorem Given a cir-
cle γ with center O, suppose that Thales’ theorem holds.

Construct two distinct diameters of γ, AC and BD.

AO ∼= BO ∼= CO ∼= DO as all are radii of γ.

∠ABO ∼= ∠COD as vertical angles, so 4AOB ∼= 4COD by S.A.S.

4AOB is isosceles (AO ∼= BO), so ∠ABO ∼= ∠BAO.

Therefore ∠CDO ∼= ∠ABO ∼= ∠BAO ∼= ∠CDO as corresponding angles of
congruent triangles. Call the common measure these angles α.

∠AOD ∼= ∠BOC as vertical angles, so 4AOD ∼= 4BOC.

4AOD is isosceles (AO ∼= BO), so ∠ADO ∼= ∠DAO.

Therefore, ∠BCO ∼= ∠ADO ∼= ∠DAO ∼= CBO as corresponding angles of
congruent triangles. Call the common measure of these angles β.

Now ∠ABC 1 is the vertex angle of 4ABC whose opposite side, AC, is
a diameter of γ, so ∠ABC is the inscribed angle of a semi-circle of γ by
definition and therefore measures 90◦ by Thales’ theorem.

∠ABC◦ = ∠ABO◦ + ∠CBO◦ = α + β, so α + β = 90◦.

The sum of the measure of the angles in 4ABC are ∠ABC◦ + ∠BAO◦ +
∠BCO◦ = (α + β) + α + β = 2(α + β) = 2× 90◦ = 180◦.

Therefore, the defect of 4ABC is 0 by definition. �

Figure 3: Pairs of defect-free triangles. Each pair of inscribed angles forms a right angle
by Thales’ theorem.

Proof of hinge theorem Bisector version Given ∠ABC > ∠A′BC with AB ∼=
A′B, we want to show AC > A′C.

1We could equally have chosen any of the other large inscribed angles, namely ∠BAD, ∠BCD, or
∠ADC, as all are right angles by Thales’ theorem.
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Without loss of generality, assume A′ is on A’s side of
←→
BC (as otherwise we

can construct A′′ on A’s side of
←→
BC s.t. ∠A′BC ∼= ∠A′′BC and A′C ∼= A′′C

by Congruence Axioms 1 and 4, then prove AC > A′′C ∼= A′C in the same
fashion.)
−→
BA ∗

−−→
BA′ ∗

−−→
BC by definition of < for angles.

By the crossbar theorem,
−−→
BA′ meets AC at some point, D say, such that

A ∗D ∗ C.

∃! ray r such that
−→
BA ∗ r ∗

−−→
BA′ and r bisects ∠ABA′ by Proposition 4.4(a)

(each angle has a unique bisector.)

By the crossbar theorem, r meets AD at a point, say E, such that A ∗E ∗D.

Then by the definition of bisector, ∠ABE ∼= ∠A′BE.

4ABE ∼= 4A′BE by S.A.S. as AB ∼= A′B by hypothesis, ∠ABE ∼= ∠A′BE
by definition of bisector (E ∈ r by construction,) and BE ∼= BE by Congru-
ence Axiom 2.

Therefore AE ∼= A′E as corresponding parts of congruent figures.

As 4A′EC is a triangle, A′E + CE > A′C by Corollary 2 to Theorem 4.3
(triangle inequality)

A ∗ E ∗D ∧ A ∗D ∗ C ⇒ A ∗ E ∗ C by Proposition 3.3.

Therefore AC = AE + CE by Theorem 4.3 (9) so that AE = AC − CE.

Then, as AE ∼= A′E,AE = A′E by Theorem 4.3 (8) so that A′E = AC−CE.

Thus, the above inequality is A′E + CE = AC − CE + CE = AC > A′C.

∴ AC > A′C by Theorem 4.3(10). Q.E.D.

Figure 4: Hinge theorem proved using the bisector r.
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Tie line version Given ∠ABC > ∠DEF with AB ∼= DE ∧ BC ∼= EF , we wish
to show that AC > DF .

Construct
−−→
BF ′ such that F ′ is interior to ∠ABC, BF ′ ∼= EF , and ∠ABF ′ ∼=

∠DEF . (Such a ray as
−−→
BF ′ exists by the definition of < for angles; such a

point as F ′ exists by Congruence Axiom 1.)

4ABF ′ ∼= 4DEF by S.A.S. Therefore, AF ′ ∼= DF as corresponding parts of
congruent triangles, so we can show that AC > AF ′.

Further, 4BCF ′ is isosceles by definition as BC ∼= BF ′ by construction, so
∠BF ′C ∼= ∠BCF ′ by Proposition 3.10 (base angles of isosceles triangle are
congruent.)

F ′ is interior to ∠ABC by construction, so
−−→
BF ′ meets AC by the crossbar

theorem. Call the point where they meet G so that A ∗G ∗ C.

G ∈
−−→
BF ′ by construction. G 6= B as B 6∈ AC but B ∈ AC. Therefore, by

Betweenness Axiom 3, exactly one of B ∗G ∗ F ′, G =′ F, or B ∗ F ′ ∗G.

Case 1 (B ∗G ∗ F ′):
−−→
CB∗

−→
CA∗

−→
CF so that ∠BCF ′ > ∠ACF ′ by definition.

∠BCF ′ ∼= ∠BF ′C, so ∠BF ′C > ∠ACF ′ as well.

∠AF ′C > ∠BF ′C by definition, as
−−→
F ′A ∗

−−→
F ′B ∗

−−→
F ′C by construction

(A ∗G ∗ C.)
Therefore, a fortiori ∠AF ′C > ∠ACF ′.
In 4ACF ′, AC is the side opposite ∠AF ′C and AF ′ that opposite
∠ACF ′. Therefore AC > AF ′ by Proposition 4.5 (greater side of a
triangle is opposite greater angle.) //

Figure 5: Hinge theorem proved using the tie line AF ′, case 1 – B ∗G ∗ F ′.

Case 2 (G = F ′): A ∗ G ∗ C ⇒ A ∗ F ′ ∗ G so AG > AF ′ by definition of >
for segments. //
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Figure 6: Hinge theorem proved using the tie line AF ′, case 2 – F ′ = G.

Case 3 (B ∗ F ′ ∗G): ∠CF ′G supplements ∠BF ′C by definition.
Construct H such that B ∗C ∗H. Then ∠F ′CH supplements ∠BCF ′ by
definition.
∴ ∠CF ′G ∼= ∠F ′CH by Proposition 3.14 (supplements of congruent
angles are congruent.)
−−→
CF ′∗

−→
CG∗

−−→
CH by construction (B∗F ′∗G∧B∗C∗H) so ∠F ′CG < ∠F ′CH

∠CF ′G ∼= ∠F ′CH so ∠CF ′G > ∠F ′CG as well.−−→
F ′A ∗

−−→
F ′G ∗

−−→
F ′C by construction (A ∗G ∗ C) so ∠AF ′C > ∠CF ′G.

Therefore, a fortiori ∠AF ′C > ∠F ′CG.
In 4ACF ′, AC is the side opposite ∠AF ′C and AF ′ that opposite
∠ACF ′. Therefore AC > AF ′ by Proposition 4.5 (greater side of tri-
angle is opposite greater angle.) //
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Figure 7: Hinge theorem proved using the tie line AF ′, case 3 – B ∗ F ′ ∗G.

Therefore, in all cases, AC > AF ′ ∼= DF . Q.E.D.
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