Mike Sorice College Geometry 11
Spring 2019 Homework -1

Ch. 4, Ex. 17 (a) Suppose O ¢ AB.
AM = BM by definition of midpoint.
AO = BO by definition of circle (both are radii of 7.)
OM = OM by Congruence Axiom 2.
ANAMO = ABMO by Proposition 3.22 (S.S.S. congruence.)
Therefore, ZAMO = ZBMQO as corresponding parts of congruent triangles.
ZAMO supplements ZBMO by definition.
S LAMO and ZBMO are right angles by definition. [J

Figure 1: Radial segment through midpoint is perpendicular to (non-diameter) chord.

(b) Case 1 (AB is not a diameter of 7): Suppose O ¢ AB as in part (a).
Then MO L AB by the result of part (a), so MO 1 AB as well.
Further, as M is the midpoint of AB by construction, m bisects AB
by definition.

Therefore m is a perpendicular bisector of AB. Then m is the unique

perpendicular bisector of AB by Proposition 4.4 (b).

As O € m, the perpendicular bisector of AB passes through O. //
Case 2 (AB is a diameter of «): Suppose on the other hand that O €

AB.

Then AO = BO by definition of circle as both are radii of .

Therefore O is the midpoint of AB by definition.
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As the perpendicular bisector of AB bisects AB, it must therefore pass
through its midpoint, O. //
Therefore, in either case, the perpendicular bisector of any chord must pass
through the center of its circle. [

Ch. 4, Ex. 18 Proof of Thales’ theorem in Euclidean geometry Let cABC be
a circle with ZBAC' the inscribed angle of a semi-circle of cABC.

Then BC' is a diameter of c ABC' by definition of inscribed angle of semicircle.
Therefore AO = BO = CO as all are radii of cABC.

Then AABO is isosceles, so ZABO = ZBAO by Proposition 3.10 (the base
angles of an isosceles triangle are congruent.) Let ZABO®° = ZBAO° = a.

Similarly, ZACO = ZC'AO. Let LZACO® = LCOAO® = .

In Euclidean geometry, Euclid’s fifth postulate holds so that the sum of the
measures of the angles of any triangle is 180° (by Theorem 4.5 and Proposition
4.11.)

In particular, o + o + ZAOB° = 180° and § + §+ ZAOC® = 180°. Adding

these two equations yields 2a + 25 + ZAOB° + ZAOC® = 360° = a+ =
1800 _ LAOB°+ZAOC°
SEEE

/AOB supplements ZAOC' by definition, so ZAOB® + ZAOC® = 180° by
Theorem 4.3 (5) (measures of supplementary angles sum to 180°.)

Therefore o + = 180° — £AQBLLA0CE — 18(° — 1802 — g0,

As a=/ZBAO° and 8 = LOAO°, a + B = LBAC”® = 90°.

.. ZBAC is a right angle by Theorem 4.3 (1) (an angle is right if and only if
it measures 90°.) O

Figure 2: Inscribed ZBAC is a right angle by Thales’ theorem.



Construction of non-defective triangle given Thales’ theorem Given a cir-
cle v with center O, suppose that Thales” theorem holds.

Construct two distinct diameters of v, AC' and BD.

AO = BO = CO = DO as all are radii of 7.

LZABO = ZCOD as vertical angles, so AAOB = ACOD by S.A.S.
AAOB is isosceles (AO = BO), so ZABO = ZBAO.

Therefore Z/CDO = ZABO = /BAO = ZCDO as corresponding angles of
congruent triangles. Call the common measure these angles a.

ZAOD = /BOC as vertical angles, so ANAOD = ABOC.
AAOD is isosceles (AO = BO), so ZADO = ZDAO.

Therefore, /BCO = ZADO = /DAO = (C'BO as corresponding angles of
congruent triangles. Call the common measure of these angles .

Now ZABC ! is the vertex angle of AABC whose opposite side, AC, is
a diameter of v, so LZABC is the inscribed angle of a semi-circle of ~ by
definition and therefore measures 90° by Thales’ theorem.

ZABC° = LZABO° + ZCBO®° = o+ 3, s0 o + 3 = 90°.

The sum of the measure of the angles in AABC are ZABC° + /BAO° +
/ZBCO° = (a+ f) +a+=2(a+ F) =2 x90° = 180°.

Therefore, the defect of AABC' is 0 by definition. [
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Figure 3: Pairs of defect-free triangles. Each pair of inscribed angles forms a right angle
by Thales’ theorem.
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Proof of hinge theorem Bisector version Given ZABC > /A'BC with AB
A’'B, we want to show AC' > A'C.

"We could equally have chosen any of the other large inscribed angles, namely ZBAD, /BCD, or
ZADC, as all are right angles by Thales’ theorem.



Without loss of generality, assume A’ is on A’s side of % (as otherwise we

can construct A” on A’s side of % st. ZA'BC = /A"BC and A/C =2 A"C
by Congruence Axioms 1 and 4, then prove AC > A”"C = A’C in the same
fashion.)

—
Ezl x BA % @ by definition of < for angles.

/
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By the crossbar theorem, BA’ meets AC' at some point, D say, such that

AxDxC.
—

3! ray r such that BA %+ BA' and r bisects ZABA’ by Proposition 4.4(a)
(each angle has a unique bisector.)

By the crossbar theorem, r meets AD at a point, say F, such that Ax E % D.
Then by the definition of bisector, ZABE =~ /A'BE.

NABE =2 ANA'BE by S.A.S. as AB = A’B by hypothesis, ZABE = /A'BE
by definition of bisector (E € r by construction,) and BE = BE by Congru-
ence Axiom 2.

Therefore AE = A'E as corresponding parts of congruent figures.

As NA'EC is a triangle, A’F + CE > A’C by Corollary 2 to Theorem 4.3
(triangle inequality)

AxExDNAxDxC = Ax FExC by Proposition 3.3.

Therefore AC' = AE + C'E by Theorem 4.3 (9) so that AL = AC — CE.
Then, as AE = A'E, AE = A'E by Theorem 4.3 (8) so that A’F = AC —CE.
Thus, the above inequality is AAE+ CFE = AC —CE +CFE = AC > A'C.

.. AC > A'C' by Theorem 4.3(10). Q.E.D.

Figure 4: Hinge theorem proved using the bisector 7.



Tie line version Given ZABC > /DFEF with AB= DE N BC = EF, we wish
to show that AC > DF.

Construct B—_>F’ such thati’)is interior to ZABC', BF' 2 FF, and ZABF' =
ZDEF. (Such a ray as BF' exists by the definition of < for angles; such a
point as F’ exists by Congruence Axiom 1.)

ANABF' =2 ADEF by S.A.S. Therefore, AF" = DF as corresponding parts of
congruent triangles, so we can show that AC' > AF".

Further, ABCF" is isosceles by definition as BC' = BF" by construction, so
/BF'C = /BCF' by Proposition 3.10 (base angles of isosceles triangle are
congruent.)

—
F" is interior to ZABC by construction, so BF’ meets AC' by the crossbar
theorem. Call the point where they meet G so that A+« G % C.

—
G € BF' by construction. G # B as B ¢ AC but B € AC. Therefore, by
Betweenness Axiom 3, exactly one of Bx G *x F'.G =" F, or Bx F' Q.

Case 1 (B* G+ F'): CB+CAxCFE so that ZBCF' > ZACF' by definition.
/BCF'" = ZBF’C so /BF'C > /ZACF' as well.

LAF'C > ZBF'C by definition, as F’A * F’B * F’C’ by construction
(AxG=xC.)

Therefore, a fortiori ZAF'C > Z/ACF’.

In AACF', AC is the side opposite ZAF'C and AF’ that opposite
LACF'. Therefore AC > AF’ by Proposition 4.5 (greater side of a
triangle is opposite greater angle.) //
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Figure 5: Hinge theorem proved using the tie line AF’, case 1 — B x G x F".

Case 2 (G=F'): AxG+xC = AxF' xG so AG > AF' by definition of >
for segments. //
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Figure 6: Hinge theorem proved using the tie line AF’, case 2 — F' = G.

Case 3 (B F'xG): ZCF'G supplements ZBF'C' by definition.
Construct H such that BxC'x H. Then Z/F'CH supplements ZBCF’ by
definition.

.. LOF'G =2 ZF'CH by Proposition 3.14 (supplements of congruent
angles are congruent.)

C—’]?’*C@*C*})[ by construction (BxF'«GAB+xCxH) so ZF'CG < ZF'CH
/CF'G= /F'CH so ZCF'G > ZF'CG as well.

F'Ax F'G * F'C by construction (4% G * C) so ZAF'C > /CF'G.
Therefore, a fortiori ZAF'C > /F'CG.

In AACF’, AC is the side opposite ZAF'C and AF’ that opposite

LACF'. Therefore AC > AF’ by Proposition 4.5 (greater side of tri-
angle is opposite greater angle.) //
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Figure 7: Hinge theorem proved using the tie line AF”’, case 3 — B F' x G.

Therefore, in all cases, AC > AF' = DF. Q.E.D.



