Mike Sorice College Geometry II

Spring 2019 Homework 3
@
Proposition. Given AABC in E? with medians measuring mq, my, and m..:
1 L 2 - 1
—Mg + =My > =a.
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Proof. Let M4 be the midpoint of BC' (and therefore the foot of the median from
A) and Mp the midpoint of AC (and foot of median from B.) Let G denote the
intersection between the medians.

The triangle inequality on ABGM gives:

BG + MaG > BMy4.

By previous theorem, the medians cut each other into pieces having a 2 : 1 ratio,
so that:

—_ 2 2
BG = gBMB = gmb
and

1 1
GMA = gAMA == §ma.

As M, is the the midpoint of BC"

1
BM, = ja.
2 1
c.=m Mgy > —a.
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Figure 1: Third and two-third portions of medians make triangle with half side.



Proposition. Given AABC in E? with medians measuring mq, my, and m.:

3
ma+mb—|—mc>1(a+b+c).

Proof. Let G be the intersection of the medians, a single point by previous theorem.

The triangle inequality on AAGB gives:
AG + BG > AB =c¢

By previous theorem, the medians cut each other at G into pieces having 2 : 1.
Therefore AG = %ma and BG = %mb so that:

2
g(ma +my) > c.

Similarly, the triangle inequality on ABCG gives:

2
§(mb +m.) > a

and the triangle inequality on AACG gives:

2
§(ma + mc> > b.

Adding these three inequalities yields:

2 3
§(2ma+2mb+2m0)>a+b+c} & [ma+mb+mc>1(a+b+0)

w

Figure 2: Two-third portions of medians from two points make triangle with side across
third point.



