
Mike Sorice College Geometry II
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1© Let h(−P ) (l) denote the half-plane across l from P .

Proposition. Given ∠ΣAΩ with A an ordinary point of K2 and Σ and Ω ideal

points, ∀P ∈ h(−A)

(←→
ΣΩ
)
,∀l s.t. P ∈ l, if l meets

−→
AΣ and l goes through no vertex

of 4AΣΩ, then l does not meet
−→
AΩ.

Proof. 1. Let P be some point of h(−A)

(←→
ΣΩ
)

and l some line such that P ∈ l

and l intersects
−→
AΣ, but (A 6∈ l) ∧ (Σ 6∈ l) ∧ (Ω 6∈ l)

2. All points of
−→
AΣ\{Σ} are on h(A)

(←→
ΣΩ
)

as
←→
AΣ∩

←→
ΣΩ = Σ and

(
Q ∈
−→
AΣ\{Σ}

)
⇒

[(Q = A) ∨ (A ∗Q ∗ Σ)] by definition of ray.

3. Since l meets
−→
AΣ ⊂

←→
AΣ by hypothesis (at 1) and definition of ray, and since

l 6=
←→
AΣ (as Σ 6∈ l by hypothesis at 1,) l meets

←→
AΣ – and

−→
AΣ – at a single

point by Proposition 2.1. Say l ∩
−→
AΣ = S.

4. Then S ∈ h(A)

(←→
ΣΩ
)

(by 2, as S ∈
−→
AΣ\{Σ} by construction at 3,) so that

∃B s.t.
(
B = l ∩

←→
ΣΩ
)
∧ (S ∗B ∗ P ) by plane separation. Further, (B 6=

Σ) ∧ (B 6= Ω) (by hypothesis at 1) since B ∈ l, so Σ ∗B ∗ Ω.

5. Thus l intersects the interior of ΣΩ, a side of 4AΣΩ by the definition of side
of a triangle.

6. Consequently, by Pasch’s theorem, l meets either A or exactly one other side
of 4AΣΩ. However, l does not go through A (hypothesis at 1,) so l meets
exactly one of AΣ or AΩ.

7. But l meets AΣ (hypothesis at 1,) so l does not meet AΩ =
−→
AΩ.

8. P being an arbitrary point of h(−A)

(←→
ΣΩ
)

and l being an arbitrary line through

P that meets
−→
AΣ and no vertex of 4AΣΩ, what holds for P and l holds for

all such points and lines.

2© Let P(n) denote an n-gon and δ
(
P(n)

)
= (n− 2)180◦−

∑(
P(n)

)
denote the defect

of P(n).

Let P(n) =
n−2⊔
i=1

4i for some triangles 41,42, ...,4n−2.

Proposition. δ
(
P(n)

)
=

n−2∑
i=1

δ (4i).
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Lemma. All polygons can be cut into triangles.

Proof of Lemma. Let P(3) be a triangle.

Then P(3) is already cut into triangles.

Suppose for induction that any polygon of at most n − 1 vertices can be cut into
triangles.

Let P(n) have n sides and vertices.

Then drawing any diagonal of P(n) cuts it into two polygons, P(n) = R(m) t
S(n−m+2), with 3 ≤ m ≤ n− 1.

But then R(m) and S(n−m+2) are triangulable by the inductive hypothesis, so that

R(m) =
⊔
i

4ri , S(n−m+2) =
⊔
j

4sj , and P(n) =

(⊔
i

4ri

)
t

(⊔
j

4sj

)

Proof of Proposition. Let P(3) be a triangle.

Then δ
(
P(3)

)
=

1∑
i=1

δ (4i) identically as P(3) = 41 =
1⊔

i=1

4i by hypothesis.

Suppose for induction that P(n) =
n−2⊔
i=1

4i ⇒ δ
(
P(n)

)
=

n−2∑
i=1

δ (4i)∀n ∈ N such

that 3 ≤ n ≤ N − 1.

Consider P(N) =
N−2⊔
i=1

4i.

Any diagonal of P(N) is also at least a connected union of sides of the {4i} that
unite to form P(N) such that cutting along a diagonal creates two polygons such
that P(N) = R(N−M+2) t S(M) with 3 ≤ M ≤ N − 1 and R(N−M+2) and S(M) are
disjoint unions of triangles from {4i}. Without loss of generality, say R(N−M+2) =
L⊔
i=1

4i and S(M) =
N−2⊔
i=L

4i.

By construction,
∑(
P(N)

)
=
∑(
R(N−M+2)

)
+
∑(
S(M)

)
so that δ

(
P(N)

)
= (N −

2)180◦−
∑(
P(N)

)
= (N − 2)180◦−

∑(
R(N−M+2)

)
−
∑(
S(M)

)
= (N +M −M −

2)180◦ −
∑(
R(N−M+2)

)
−
∑(
S(M)

)
= (N −M)180◦ −

∑(
R(N−M+2)

)
+ (M −

2)180◦ −
∑(
S(M)

)
= δ

(
R(N−M+2)

)
+ δ

(
S(M)

)
.

By the inductive hypothesis, δ
(
R(N−M+2)

)
=

L∑
i=1

δ (4i) and δ
(
S(M)

)
=

N−2∑
i=L

δ (4i)

so that δ
(
P(N)

)
=

L∑
i=1

δ (4i) +
N−2∑
i=L

δ (4i) =
N−2∑
i=1

δ (4i).

3© Let P =
n⊔

k=1

Pk.
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Proposition. δ (P) =
n∑

k=1

δ (Pk).

Proof of Proposition. All polygons having a triangulation by previous lemma, say

Pk =
nk⊔
i=1

4ki .

P then has triangulation P =
n⊔

k=1

n(k)⊔
i=1

4ki .

Thus, by the result of 2©, δ (P) =
n∑

k=1

[
n(k)∑
i=1

δ (4ki)

]
.[

n(k)∑
i=1

δ (4ki)

]
= δ (Pk) by the result of 2© and the earlier triangulation of Pk.

∴ δ (P) =
n∑

k=1

δ (Pk).
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