Mike Sorice College Geometry 11
Spring 2019 Homework 1

@ Let P be a point inside LA = /X AQ), with A an ordinary point and ¥ and (2 ideal
points. Let v = ¢(P, AP). Does 7 always meet the sides of ZA at some ordinary
points...

...in E2?

Proposition. v always meets both sides of ZA.

Proof. By Congruence Axiom 1, 315 s.t. S € ﬁ NAS = AP.

As A and AP are respectively the center and radius of v by construction,
AS = AP = S € v by definition of circle.

E meets v at S.
Similarly, W € AG N .
O

Since all points of E? are ordinary, so are S and W. Therefore, v does meet
both sides of ZA at ordinary points.

...in H2? We made no use of Euclid’s Fifth Postulate in the above proof, so ~ still
meets both sides of ZA in H2. It may seem possible to construct counterex-
amples in models of H? like this one:

[{PN2]

Figure 1: Seeming counterexample in K2. I and A are ideal points where “y” meets the
boundary. It seems that any angle whose sides are in the shaded area — on the side of

(A}

I'A opposite P — will therefore miss “y”...

However, these rely on flawed reasoning. In this case, a flaw is that , while“y”
is a circle in the larger Euclidean plane in which K? is embedded, some points
of “y” are further from A in K2 than others. AP < AA, for instance!.

[P2]

Therefore, “y” is by definition not a circle in K2.

In fact AA is infinite compared to AP!



Further, since all points finitely far from the normal point A are normal points,
and since AS = AW = AP, S and W are normal point as long as P is. If, on
the other hand, P is an ideal point, then so are S and W, since AP is then
infinite, so that AS and AW are as well, but only ideal points are infinitely
far from the normal point A.

In summary, then, in K2 v = ¢(A, AP) meets both sides of ZA at ordinary
points as long as P is a normal point. On the other hand, v meets neither
side of ZA at ordinary points if P is an ideal point.

@ Given LA = /3 AQ with A an ordinary point and ¥ and 2 ideal points, find {P}
such that P is inside ZA and...

(i) ...31 through P that meets neither side of ZA...

. in E2.
Proposition. {P} = 0.
Proof. zﬁ = s and fﬁ = w are distinct and not parallel by construction
(as a ray of each forms ZA.)
There is a unique line through P parallel to jﬁ = s, say t. There is also
a unique line through P parallel to A2 = w, say u. Both results are by
the Euclidean parallel postulate.
t is distinct from u as s is distinct from and not parallel to w and the
relation “is parallel or equal to” is transitive for lines in E? by previous
result.
Any line through P is then exactly one of: t and parallel to s, u and
parallel to w, or some third line parallel to neither s nor w.

Case 1 (I = t): | meets w as [ cannot be parallel to both s and w since
s#wAs [fw;l#wsince P € w, P being interior to ZA, but P € [ by
hypothesis; and (|| V =) is transitive by earlier result.

[ does not meet s, so all points of [ are on the same side of s, namely 2’s
(and P’s) side.

The ray of w on 2’s side of s is m, so [ meets Ei, a side of ZA. //

Case 2 (I = u): [ meets s as [ cannot be parallel to both s and w since
s#wAs |fw;l # ssince P ¢ s, P being interior to ZA, but P € [ by
hypothesis; and (|| V =) is transitive by earlier result.

[ does not meet w, so all points of [ are on the same side of w, namely
Y’s (and P’s) side.

The ray of s on ¥’s side of w is zﬁ, so [ meets E, a side of ZA. //

Case 3 (I #t Al # u): Then [ meets both s and w.

If at A, then [ meets both sides of ZA. /

If not at A, then it meets s and w at two distinct points, say S and W.
Exactly one of Sx P+ W, PxS«W or PxW xS by Betweenness Axiom
3 (P is neither S nor W as it lies on neither S nor W; S # W as then
S =W = A which is false by hypothesis.)
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If S P« W, then, by plane separation and definition of ray, S is on
P’s side of w and therefore on A3, a side of ZA. Further, by the same
reasoning, W is on P’s side of s and therefore on ﬁ, a side of ZA. /

If Px.S %W, then by the same reasoning, S is on P’s side of w and
therefore on ﬁ, a side of ZA. /

Finally, if P x W % .S, then by the same reasoning, W is on P’s side of s
and therefore on ﬁ, a side of ZA. //

Therefore, in all cases, any line through P meets at least one side of ZA.
m

Figure 2: No Euclidean line through a point within ZA can miss its sides.

. in H2.

Proposition. {P} contains no point interior to ANAXQ.
Proof. Suppose P is interior to AAYX).
Then any ray r from P meets a side of AAYQ by Proposition 3.9 (b)
(any ray emanating from an interior point of a triangle meets a side of
that triangle.)
Therefore, by Pasch’s theorem, the line [ of which r is half meets at least
two sides of AAXQ.
As all but one side of AAXQ is a side of ZA, [ meets at least one side of
LA.

[

Proposition. {P} contains all points on 508!
Proof. 3 is such a line. m

Proposition. {P} contains all points across % from A.

Proof. There is at least one line through P parallel to ﬁ, say .
All points on [ are on P’s side of ().
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All points of E and ,ﬁ are on A’s side of ﬁ

Therefore, [ meets neither zﬁ nor m, being the two sides of ZA. [

.. {P} is the portion of ZA’s interior not on A’s side of ﬁ, including
itself.
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Figure 3: In the Beltrami-Klein model, no point within the %—ideal triangle with vertex
A can have a line through it that misses the sides of ZA, but points outside can.

(ii) ...3l through P other than P that meets both sides of ZA...
. in E%

Proposition. {P} is the whole interior of ZA.
Proof. Let P by some point within ZA.
By the Euclidean Parallel Postulate, 3lm s.t. (P € m)A[m || (w = Ki)]
Since m |f (s = jﬁ) (asm || wbut (w |} s) A (w # s)) and m # s (as
(A€ s)N(A¢&m),) m meets s at some unique point by Proposition 2.1,
say S =mnNs.
Further, S € (ﬁ\{A}), since all points of m are on P’s side of w, AS s
the half of s on that side, and A € w.
Let S’ satisfy A % S S’. Then P<—>S' meets w since P<—>S' + P3 (otherwise
S = S since A% Nm = S, but A% S %S = S # S by definition) and
ﬁ is the only line through P parallel to w. Say W = w N ?S’ Further
let [ = S,
AP cuts /SAQ (as P is within ZA) so that ZXAP < ZXAQ by defini-
tion. Let /X AQ° = o and £LXAP° = oy so that o > «y.

Let ZAPS — ¢ and ZAPS' — &. Now PAx P+ PS (by A S+ S as
P ¢ A8) so that ZAPS' > JAPS = ¢ > 6.
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Let ZASP° =0 and ZAS'P° =¢’'.

As Euclidean triangles have a common angle sum, X(AAPS) = a3 + ¢+
c=a1+¢ +0 =X(QAPS) = o0—-0d =¢ —¢p>0=>0>0 =
LASP > /ZAS'P.

As s is a transversal of parallel lines m and w in E?, ZXAQ = /PSS’ as
alternate interior angles, so /PSS’ = «. Further, ZASP supplements
/PSS’ so a+ o = 180°.

coa+0' < 180° so [ meets w on P’s side of s by Euclid’s Fifth Postulate.
Therefore, W € (m\{A}) A being the other side of ZA, | meets both
sides of ZA, intersects P, and does not intersect A.

As P is an arbitrary point within ZA, what holds for P holds for any

such point.

.. all points within ZA have at least one line through other than ﬁ that

meets both sides of ZA. O
5<

Figure 4: Euclidean parallelism makes it so that no point inside ZA can miss its sides.

. in HZ.
Proposition. {P} includes all points within AAXX)..

Proof. Suppose P is within AAY).

There is at least one line through P parallel to ﬁ Let [ be such a line.
Let r be a ray of [ emanating from P. Then r meets a side of AAX) by
Proposition 3.9 (b). r does not meet X2 as r is a ray of [ and [ || 58] by
construction. Further, r does not go through A as r would then be a ray
of ﬁ, but AP must meet X by the crossbar theorem and [ || $0 by
construction. Therefore, r meets either AY or AS) at a point other than
A, X, or €.

Then by Pasch’s theorem, [ meets another side of AAYS). By previous
arguments, [ does not meet >(), nor does it intersect A. Therefore —r
meets whichever of AY or A€) that r does not meet.

Consequently [ meets both sides of ZA.
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Proposition. {P} includes no point on $6.

Proof. Suppose P € ﬁ

Let A*S*Zandl:m.

Suppose for contradiction that (W € 1) A (W € m)

Then S % P x W by Proposition 3.7 (point on crossbar is interior if and
only if it is between points on sides) as P is interior to ZA by hypothesis.
Then W is not on S’s side of by plane separation.

But all points of Fz are on S’s side of ﬁ except for € itself, so [ can
only meet ,ﬁ at .

However, since P € % AP €[, if [ goes through €2, then [ = ﬁ so that
S =3, contradicting S x Px W, =<

Similarly, if A« W xQ and [ = ?V[}, then [ cannot meet ﬁ

However, [ must meet one of the sides of AAX) by the crossbar theorem.
Therefore, no such [ can meet both non-32 sides of AAYX), but these
are the sides of ZA. m

Proposition. {P} includes no point across ﬁ from A.

Proof. Suppose P is on the side of ﬁ across from A.
Let P € l. Then either [ meets X2 or not.
If [ meets %, then this is reduced to the previous case.
If on the other hand [ || %, then [ is entirely on P’s side of $6 and can
therefore meet neither side of ZA by plane separation, as the the entirety
of both sides of ZA except ¥ and 2 themselves is on A’s side of ﬁ

[

. {P} consists of all points interior to AAYXQ, that is, it is the comple-
ment in the interior of ZA of the set in part (i).
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Figure 5: In K2, lines through P parallel to the limiting crossbar allow us to construct
[ that hits both sides if P is within the limiting crossbar, and prevent that construction
if P is without.

(iii) ...Vl through P except fﬁ,l meets exactly one side of ZA...
. in E2.
Proposition. {P} = 0.
Proof. As shown in (ii), every P interior to ZA has at least one line other
than jﬁ through that meets both sides of ZA. m
. in H2.
Proposition. {P} = 0.
Proof. As shown in (ii), every P interior to AAYX( has at least one line

other than ﬁ through that meets both sides of ZA.
Further, as shown in (i), every P interior to ZA but not interior to AAX()

(i.e. on or across £0 from A) has a line through that meets neither
side. O

@ Given LA, is it possible VR € R, R > 0 to find an interior point B such that
¢(B, R) is entirely within ZA...
. in E2?
Proposition. A circle of arbitrary radius can be made to fit within ZA.
— B
Proof. Let ZA have sides AB; and AC). Suppose without loss of generality
(by Congruence Axiom 1) that AB; = AC). Further let b = AB; = AC and
a = BlCl.

Every triangle has a unique incircle, a circle tangent to all sides, whose cen-
ter is the point of intersection of its angle bisectors, say D;. For AAB;CY,
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an isosceles triangle whose side lengths are {a,b,b}, the incircle has radius
_ 2A(L) 2 a+2b (a+2b a+2b a+2b __ _ab a\?
no= S = (0 (2 -0 (452 - 0) = 2/ (5)

(D) a+2b 2 2 2 2 a+2b
2
)
2 2%—}—1

Any circle centered on D; whose radius is less than r; will fit entirely within
ANAB;Cq, and therefore within ZA.

By Congruence Ax@g 1, there is a point B,, € A—Bl) such that AB, =n-AB;
and likewise C,, € ACy such that AC,, =n - AC;. Thus AB, = AC,, = nb.
AAB,C, being an isosceles triangle in E* with ZA as one of its vertices,
AAB,Cy ~ AAB,C, so that B,C,, = 422 B,Cy = nB,C, = na.

ABy

NAB,C, has an incircle centered at D,,, say, whose radius is r,, = %2
(5)"+1
25 +1

Any circle centered at D,, whose radius is smaller than r,, = nry will fit entirely

within AAB.C,,.

As r; > 0, by the Archimedian property, for any real number R, there is some

natural number n such that nry > R. Therefore, ¢(D,, R) will fit entirely

within AAB,C,,. The interior of AAB, C,, being part of the interior of ZA,

a fortiori ¢(Dy, R) fits entirely within ZA.

a —
n§ = nri.

O

Figure 6: Crossbar B;C; may be moved down the sides of Euclidean angle ZA to fit an
incircle of arbitrary size.

. in H2? We made use of Euclid V in the above proof for E?, but perhaps it was
not necessary to do so. We must use a different route, then, to examine the
case in HZ.



Proposition. There is a finite upper bound on the radius of any circle that
can fit within AAYX).

Proof. Let r bisect ZA.
r meets () by the crossbar theorem.

Further, R = r N X2 is some regular point, since X and () are the only ideal
points on X0, but if r goes through either, it cannot bisect ZA (as then
either R = ¥ so that ZRAQ = /Y AQ = ZRAQ > ZRAY, or R = ) so
that /X AR = /¥ AQ = /ZRAY. > ZRAS), and either these contradict the
construction of r as bisector of ZA.)

Clearly no circle centered on r can fit inside A AXQ) if its radius is bigger than
AR, which is a finite segment as A and R are ordinary points.

Yet the incircle of AAYX) has its center on r and any circle larger than the
incircle cannot be drawn entirely within AAXQ.

.. the largest circle that can be drawn in AAYX) is finite. O]

This does not entirely decide the matter as the half-plane across ﬁ from A
is part of the interior of ZA yet not inside AAX().

I speculate that a circle of arbitrary radius may be placed at some point on r
across A from ().

Suppose that ¢(By,ry) fits within ZA such that ¢(By, Ry > r;) is tangent to
the sides of ZA (if tangent to one side at a point S; then it is also tangent to
the other at a point W7 as AABS; =2 AAB;W; by S.S.S. congruence.)

By Congruence Axiom 1, !By € r s.t. ABy = 2- AB; such that B,S; > B S
and ¢(Ba, Ry) now fits entirely within ZA.

There will again be some Ry so that ¢(Bs, Ry) is tangent to the sides of ZA,
but this the process of finding a Bs beyond By, may be repeated.

Further, the same process may be repeated an arbitrary number of times, so
that there is a B,, € r s.t. AB, =n-AB; and ¢(B,,, R,_1) fits in ZA.

R,,_1 grows without bound as B, approaches the boundary of K2. Therefore,
for any finite radius R, a point B,, can be found such that R, < R < R,
where R, is defined such that ¢(B,, R,) is tangent to the sides of ZA. Then
¢(By, R) fit entirely within ZA, being itself entirely within ¢(B,, R,,).
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Figure 7: B, can be placed arbitrarily close to the boundary of K? to fit a circle of
arbitrary finite radius.
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