
Mike Sorice College Geometry II
Spring 2019 Homework 1

1© Let P be a point inside ∠A = ∠ΣAΩ, with A an ordinary point and Σ and Ω ideal
points. Let γ = c(P,AP ). Does γ always meet the sides of ∠A at some ordinary
points...

...in E2?

Proposition. γ always meets both sides of ∠A.

Proof. By Congruence Axiom 1, ∃!S s.t. S ∈
−→
AΣ ∧ AS ∼= AP .

As A and AP are respectively the center and radius of γ by construction,
AS ∼= AP ⇒ S ∈ γ by definition of circle.

∴
−→
AΣ meets γ at S.

Similarly, ∃!W ∈
−→
AΩ ∩ γ.

Since all points of E2 are ordinary, so are S and W . Therefore, γ does meet
both sides of ∠A at ordinary points.

...in H2? We made no use of Euclid’s Fifth Postulate in the above proof, so γ still
meets both sides of ∠A in H2. It may seem possible to construct counterex-
amples in models of H2 like this one:

Figure 1: Seeming counterexample in K2. Γ and Λ are ideal points where “γ” meets the
boundary. It seems that any angle whose sides are in the shaded area – on the side of
ΓΛ opposite P – will therefore miss “γ”...

However, these rely on flawed reasoning. In this case, a flaw is that , while“γ”
is a circle in the larger Euclidean plane in which K2 is embedded, some points
of “γ” are further from A in K2 than others. AP < AΛ, for instance1.
Therefore, “γ” is by definition not a circle in K2.

1In fact AΛ is infinite compared to AP !
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Further, since all points finitely far from the normal point A are normal points,
and since AS ∼= AW ∼= AP , S and W are normal point as long as P is. If, on
the other hand, P is an ideal point, then so are S and W , since AP is then
infinite, so that AS and AW are as well, but only ideal points are infinitely
far from the normal point A.

In summary, then, in K2, γ = c(A,AP ) meets both sides of ∠A at ordinary
points as long as P is a normal point. On the other hand, γ meets neither
side of ∠A at ordinary points if P is an ideal point.

2© Given ∠A = ∠ΣAΩ with A an ordinary point and Σ and Ω ideal points, find {P}
such that P is inside ∠A and...

(i) ...∃l through P that meets neither side of ∠A...

... in E2.

Proposition. {P} = ∅.
Proof.

←→
AΣ = s and

←→
AΩ = w are distinct and not parallel by construction

(as a ray of each forms ∠A.)

There is a unique line through P parallel to
←→
AΣ = s, say t. There is also

a unique line through P parallel to
←→
AΩ = w, say u. Both results are by

the Euclidean parallel postulate.
t is distinct from u as s is distinct from and not parallel to w and the
relation “is parallel or equal to” is transitive for lines in E2 by previous
result.
Any line through P is then exactly one of: t and parallel to s, u and
parallel to w, or some third line parallel to neither s nor w.

Case 1 (l = t): l meets w as l cannot be parallel to both s and w since
s 6= w ∧ s 6‖ w; l 6= w since P 6∈ w, P being interior to ∠A, but P ∈ l by
hypothesis; and (‖ ∨ =) is transitive by earlier result.
l does not meet s, so all points of l are on the same side of s, namely Ω’s
(and P ’s) side.

The ray of w on Ω’s side of s is
−→
AΩ, so l meets

−→
AΩ, a side of ∠A. //

Case 2 (l = u): l meets s as l cannot be parallel to both s and w since
s 6= w ∧ s 6‖ w; l 6= s since P 6∈ s, P being interior to ∠A, but P ∈ l by
hypothesis; and (‖ ∨ =) is transitive by earlier result.
l does not meet w, so all points of l are on the same side of w, namely
Σ’s (and P ’s) side.

The ray of s on Σ’s side of w is
−→
AΣ, so l meets

−→
AΣ, a side of ∠A. //

Case 3 (l 6= t ∧ l 6= u): Then l meets both s and w.
If at A, then l meets both sides of ∠A. /
If not at A, then it meets s and w at two distinct points, say S and W .
Exactly one of S ∗P ∗W , P ∗S ∗W , or P ∗W ∗S by Betweenness Axiom
3 (P is neither S nor W as it lies on neither S nor W ; S 6= W as then
S = W = A which is false by hypothesis.)
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If S ∗ P ∗ W , then, by plane separation and definition of ray, S is on

P ’s side of w and therefore on
−→
AΣ, a side of ∠A. Further, by the same

reasoning, W is on P ’s side of s and therefore on
−→
AΩ, a side of ∠A. /

If P ∗ S ∗ W , then by the same reasoning, S is on P ’s side of w and

therefore on
−→
AΣ, a side of ∠A. /

Finally, if P ∗W ∗ S, then by the same reasoning, W is on P ’s side of s

and therefore on
−→
AΩ, a side of ∠A. //

Therefore, in all cases, any line through P meets at least one side of ∠A.

Figure 2: No Euclidean line through a point within ∠A can miss its sides.

... in H2.

Proposition. {P} contains no point interior to 4AΣΩ.

Proof. Suppose P is interior to 4AΣΩ.
Then any ray r from P meets a side of 4AΣΩ by Proposition 3.9 (b)
(any ray emanating from an interior point of a triangle meets a side of
that triangle.)
Therefore, by Pasch’s theorem, the line l of which r is half meets at least
two sides of 4AΣΩ.
As all but one side of 4AΣΩ is a side of ∠A, l meets at least one side of
∠A.

Proposition. {P} contains all points on
←→
ΣΩ

Proof. ΣΩ is such a line.

Proposition. {P} contains all points across
←→
ΣΩ from A.

Proof. There is at least one line through P parallel to
←→
ΣΩ, say l.

All points on l are on P ’s side of
←→
ΣΩ.
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All points of
−→
AΣ and

−→
AΩ are on A’s side of

←→
ΣΩ.

Therefore, l meets neither
−→
AΣ nor

−→
AΩ, being the two sides of ∠A.

∴ {P} is the portion of ∠A’s interior not on A’s side of
←→
ΣΩ, including

←→
ΣΩ itself.

Figure 3: In the Beltrami-Klein model, no point within the 2
3
-ideal triangle with vertex

A can have a line through it that misses the sides of ∠A, but points outside can.

(ii) ...∃l through P other than
←→
AP that meets both sides of ∠A...

... in E2.

Proposition. {P} is the whole interior of ∠A.

Proof. Let P by some point within ∠A.

By the Euclidean Parallel Postulate, ∃!m s.t. (P ∈ m)∧ [m ‖ (w =
←→
AΩ)].

Since m 6‖ (s =
←→
AΣ) (as m ‖ w but (w 6‖ s) ∧ (w 6= s)) and m 6= s (as

(A ∈ s) ∧ (A 6∈ m),) m meets s at some unique point by Proposition 2.1,
say S = m ∩ s.
Further, S ∈ (

−→
AΣ\{A}), since all points of m are on P ’s side of w,

−→
AΣ is

the half of s on that side, and A ∈ w.

Let S ′ satisfy A ∗ S ∗ S ′. Then
←→
PS ′ meets w since

←→
PS ′ 6=

←→
PS (otherwise

S = S ′ since
←→
AΣ ∩m = S, but A ∗ S ∗ S ′ ⇒ S 6= S ′ by definition) and

←→
PS is the only line through P parallel to w. Say W = w ∩

←→
PS ′. Further

let l =
←−→
S ′W .−→

AP cuts ∠ΣAΩ (as P is within ∠A) so that ∠ΣAP < ∠ΣAΩ by defini-
tion. Let ∠ΣAΩ◦ = α and ∠ΣAP ◦ = α1 so that α > α1.

Let ∠APS = φ and ∠APS ′ = φ′. Now
−→
PA ∗

−→
PS ∗

−−→
PS ′ (by A ∗ S ∗ S ′ as

P 6∈
←→
AS) so that ∠APS ′ > ∠APS ⇒ φ′ > φ.
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Let ∠ASP ◦ = σ and ∠AS ′P ◦ = σ′.
As Euclidean triangles have a common angle sum, Σ(4APS) = α1 +φ+
σ = α1 + φ′ + σ′ = Σ(4APS ′) ⇒ σ − σ′ = φ′ − φ > 0 ⇒ σ > σ′ ⇒
∠ASP > ∠AS ′P .
As s is a transversal of parallel lines m and w in E2, ∠ΣAΩ ∼= ∠PSS ′ as
alternate interior angles, so ∠PSS ′◦ = α. Further, ∠ASP supplements
∠PSS ′, so α + σ = 180◦.
∴ α+σ′ < 180◦, so l meets w on P ’s side of s by Euclid’s Fifth Postulate.

Therefore, W ∈ (
−→
AΩ\{A}).

−→
AΩ being the other side of ∠A, l meets both

sides of ∠A, intersects P , and does not intersect A.
As P is an arbitrary point within ∠A, what holds for P holds for any
such point.

∴ all points within ∠A have at least one line through other than
←→
AP that

meets both sides of ∠A.

Figure 4: Euclidean parallelism makes it so that no point inside ∠A can miss its sides.

... in H2.

Proposition. {P} includes all points within 4AΣΩ..

Proof. Suppose P is within 4AΣΩ.

There is at least one line through P parallel to
←→
ΣΩ. Let l be such a line.

Let r be a ray of l emanating from P . Then r meets a side of 4AΣΩ by

Proposition 3.9 (b). r does not meet ΣΩ as r is a ray of l and l ‖
←→
ΣΩ by

construction. Further, r does not go through A as r would then be a ray

of
←→
AP , but

←→
AP must meet ΣΩ by the crossbar theorem and l ‖

←→
ΣΩ by

construction. Therefore, r meets either AΣ or AΩ at a point other than
A,Σ, or Ω.
Then by Pasch’s theorem, l meets another side of 4AΣΩ. By previous
arguments, l does not meet ΣΩ, nor does it intersect A. Therefore −r
meets whichever of AΣ or AΩ that r does not meet.
Consequently l meets both sides of ∠A.
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Proposition. {P} includes no point on
←→
ΣΩ.

Proof. Suppose P ∈
←→
ΣΩ.

Let A ∗ S ∗ Σ and l =
←→
PS.

Suppose for contradiction that (W ∈ l) ∧ (W ∈
−→
AΩ).

Then S ∗ P ∗W by Proposition 3.7 (point on crossbar is interior if and
only if it is between points on sides) as P is interior to ∠A by hypothesis.

Then W is not on S’s side of
←→
ΣΩ by plane separation.

But all points of
−→
AΩ are on S’s side of

←→
ΣΩ except for Ω itself, so l can

only meet
−→
AΩ at Ω.

However, since P ∈
←→
ΣΩ∧P ∈ l, if l goes through Ω, then l =

←→
ΣΩ so that

S = Σ, contradicting S ∗ P ∗W . ⇒⇐
Similarly, if A ∗W ∗ Ω and l =

←−→
PW , then l cannot meet

−→
AΣ.

However, l must meet one of the sides of 4AΣΩ by the crossbar theorem.
Therefore, no such l can meet both non-ΣΩ sides of 4AΣΩ, but these
are the sides of ∠A.

Proposition. {P} includes no point across
←→
ΣΩ from A.

Proof. Suppose P is on the side of
←→
ΣΩ across from A.

Let P ∈ l. Then either l meets ΣΩ or not.
If l meets

←→
ΣΩ, then this is reduced to the previous case.

If on the other hand l ‖
←→
ΣΩ, then l is entirely on P ’s side of

←→
ΣΩ and can

therefore meet neither side of ∠A by plane separation, as the the entirety

of both sides of ∠A except Σ and Ω themselves is on A’s side of
←→
ΣΩ.

∴ {P} consists of all points interior to 4AΣΩ, that is, it is the comple-
ment in the interior of ∠A of the set in part (i).
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Figure 5: In K2, lines through P parallel to the limiting crossbar allow us to construct
l that hits both sides if P is within the limiting crossbar, and prevent that construction
if P is without.

(iii) ...∀l through P except
←→
AP, l meets exactly one side of ∠A...

... in E2.

Proposition. {P} = ∅.
Proof. As shown in (ii), every P interior to ∠A has at least one line other

than
←→
AP through that meets both sides of ∠A.

... in H2.

Proposition. {P} = ∅.
Proof. As shown in (ii), every P interior to 4AΣΩ has at least one line

other than
←→
AP through that meets both sides of ∠A.

Further, as shown in (i), every P interior to ∠A but not interior to4AΣΩ

(i.e. on
←→
ΣΩ or across

←→
ΣΩ from A) has a line through that meets neither

side.

3© Given ∠A, is it possible ∀R ∈ R, R > 0 to find an interior point B such that
c(B,R) is entirely within ∠A...

... in E2?

Proposition. A circle of arbitrary radius can be made to fit within ∠A.

Proof. Let ∠A have sides
−−→
AB1 and

−−→
AC1. Suppose without loss of generality

(by Congruence Axiom 1) that AB1
∼= AC1. Further let b = AB1 = AC1 and

a = B1C1.

Every triangle has a unique incircle, a circle tangent to all sides, whose cen-
ter is the point of intersection of its angle bisectors, say D1. For 4AB1C1,
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an isosceles triangle whose side lengths are {a, b, b}, the incircle has radius

r1 = 2A(4)
p(4)

= 2
a+2b

√
a+2b
2

(
a+2b
2
− a
) (

a+2b
2
− b
) (

a+2b
2
− b
)

= ab
a+2b

√(
a
2b

)2
+ 1

= a
2

√
( a
2b)

2
+1

a
2b

+1

Any circle centered on D1 whose radius is less than r1 will fit entirely within
4AB1C1, and therefore within ∠A.

By Congruence Axiom 1, there is a point Bn ∈
−−→
AB1 such that ABn = n ·AB1

and likewise Cn ∈
−−→
AC1 such that ACn = n · AC1. Thus ABn = ACn = nb.

4ABnCn being an isosceles triangle in E2 with ∠A as one of its vertices,
4AB1C1 ∼ 4ABnCn so that BnCn = ABn

AB1
B1C1 = nB1C1 = na.

4ABnCn has an incircle centered atDn, say, whose radius is rn = na
2

√
( na
2nb)

2
+1

na
2nb

+1
=

na
2

√
( a
2b)

2
+1

a
2b

+1
= nr1.

Any circle centered at Dn whose radius is smaller than rn = nr1 will fit entirely
within 4ABcCn.

As r1 > 0, by the Archimedian property, for any real number R, there is some
natural number n such that nr1 > R. Therefore, c(Dn, R) will fit entirely
within 4ABnCn. The interior of 4ABnCn being part of the interior of ∠A,
a fortiori c(Dn, R) fits entirely within ∠A.

Figure 6: Crossbar BiCi may be moved down the sides of Euclidean angle ∠A to fit an
incircle of arbitrary size.

... in H2? We made use of Euclid V in the above proof for E2, but perhaps it was
not necessary to do so. We must use a different route, then, to examine the
case in H2.
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Proposition. There is a finite upper bound on the radius of any circle that
can fit within 4AΣΩ.

Proof. Let r bisect ∠A.

r meets ΣΩ by the crossbar theorem.

Further, R = r ∩ ΣΩ is some regular point, since Σ and Ω are the only ideal
points on ΣΩ, but if r goes through either, it cannot bisect ∠A (as then
either R = Σ so that ∠RAΩ ∼= ∠ΣAΩ ⇒ ∠RAΩ > ∠RAΣ, or R = Ω so
that ∠ΣAR ∼= ∠ΣAΩ ⇒ ∠RAΣ > ∠RAΩ, and either these contradict the
construction of r as bisector of ∠A.)

Clearly no circle centered on r can fit inside 4AΣΩ if its radius is bigger than
AR, which is a finite segment as A and R are ordinary points.

Yet the incircle of 4AΣΩ has its center on r and any circle larger than the
incircle cannot be drawn entirely within 4AΣΩ.

∴ the largest circle that can be drawn in 4AΣΩ is finite.

This does not entirely decide the matter as the half-plane across
←→
ΣΩ from A

is part of the interior of ∠A yet not inside 4AΣΩ.

I speculate that a circle of arbitrary radius may be placed at some point on r
across A from ΣΩ.

Suppose that c(B1, r1) fits within ∠A such that c(B1, R1 > r1) is tangent to
the sides of ∠A (if tangent to one side at a point S1 then it is also tangent to
the other at a point W1 as 4AB1S1

∼= 4AB1W1 by S.S.S. congruence.)

By Congruence Axiom 1, ∃!B2 ∈ r s.t. AB2 = 2 ·AB1 such that B2S1 > B1S1

and c(B2, R1) now fits entirely within ∠A.

There will again be some R2 so that c(B2, R2) is tangent to the sides of ∠A,
but this the process of finding a B3 beyond B2 may be repeated.

Further, the same process may be repeated an arbitrary number of times, so
that there is a Bn ∈ r s.t. ABn = n · AB1 and c(Bn, Rn−1) fits in ∠A.

Rn−1 grows without bound as Bn approaches the boundary of K2. Therefore,
for any finite radius R, a point Bn can be found such that Rn−1 ≤ R < Rn,
where Rn is defined such that c(Bn, Rn) is tangent to the sides of ∠A. Then
c(Bn, R) fit entirely within ∠A, being itself entirely within c(Bn, Rn).
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Figure 7: Bn can be placed arbitrarily close to the boundary of K2 to fit a circle of
arbitrary finite radius.
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