SPRING 2019
MAT 3272 - COLLEGE GEOMETRY, Part II

Instructor: Dr. G. Galperin

| FINAL EXAM
GEOMETRIES: Neutral N2, Euclidean E2, and Hyperbolic H>

Name: M 3’19”4&6

1. (a) Prove the transitivity of parallel lines in Euclidean geometry E2:

If a||b and bl|c, then allc .
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(b) In hyperbolic geometry H?, some three h-lines a, b, ¢ satisfy the following three
conditions: ¢ =< b (divergently parallel), b > ¢ (asymptotically parallel), and cXa
(“X” means intersecting lines). Prove that there is a line d divergently parallel to
each of the three lines a, b, ¢, and there is a line e asymptotically parallel to each of
a,b,c. Use the Klein model K? for your justification.
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(c) True or False: | In H?, if a < b and b < ¢, then either a = c or a > c. |If this state-

ment is True, justify it; if it is False, give a counterexample. Circle your answer
below. Use the Klein model K? for your answer and justification. [K*:

Answer: True ( False | )
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2. Lines a and b have a common perpendicular PQ (P € a, @ € b). Point A is marked on
the line a and point B on the line b such that the segment AB intersects the segment
PQ at point N, where BN < NA. Denote ZPAN = a and ZQBN = . Answer,
with a proof, the following:

Which of the three possibilities can happen: a < §, a =, or a > %
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3. A circle ¢ with center O is drawn in the hyperbolic plane H?, and three points A, B, C
are marked on the circle ¢ such that AB is a diameter. Answer the following two
~ questions an prove your answers.

(a) Is-the inscribed ZACB = £C less, equal, or greater than a right angle? Answer: 4 C’<e

(b) Is the inscribed angle ZBAC = LA less, equal, or greater than % BC/2?
Answer: g 4° ¢ 3’26/2 .
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4. Implement the following instruction and answer, with a proof, to the questions (a)
and (b) below:.

(0) Draw the Klein model K? of hyperbolic plane H? and draw the horizontal and vertical
diameters through the center O of the model (consider them as the z— and the y— axes).

(1) In the first quadrant of the circle, mark the midpoint A on the upper vertical radius
(where y > 0) and then draw the horizontal half-chord AT to the right through point A.

(2) Draw some three vertical half-chords in the first quadrant and label the points of their
intersection with the half-chord AY as A;, As, and As; draw also the vertical chord down
through point . Label by Bi, By, and Bz the intersection points of the three drawn vertical
half-chords with the positive z—axis, and by €2 the half-chord through ¥ (so the point §2 lies
on the r—axis).

(3) Consider now the Euclidean segments A1 B;, A2 Ba, A3Bs, and £ as hyperbolic segments
of the respective hyperbolic lines in the model K2. Construct the hyperbolic perpendiculars
AM,, AM,y, and AMs from point A to the hyperbolic lines A1 B, A2Bs, A3Bs, respectively.

(a) Prove that the lines your draw are indeed the h-perpendiculars in your construc-
tion.

(b) Suppose you drew infinitely many such h-perps ApBn, n=1,2,3, ... (as you did
for the first three of them). Do the hyperbolic rays AM,, tend asymptotically to the
hyperbolic ray O} as n — oo ? Or the hyperbolic ray 217\7 = lim AM, is divergently
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parallel to the ray bﬁ?
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. Let AABC be an obtuse Euclidean triangle with the side lengths BC =aq, AC =
a+1,and AB=a+2. ‘ S .2 |

(a) Find the range for the length of each side.
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(c) In the frame of item (b), find the area of AABC’ and the lengths of its three
altitudes hy, hp, and hc.
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of the inscribed circle for AABC. Answer:
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6. Prove for the Neutral geometry N? that a hne ¢ cannot intersect a circle ¢ at 3 or
more than 3 distinct points.
(Only after proving this fact, saying that at most 2 intersection points can occur with a line
and a circle, one can give a correct definition of the interior of the circle c. So, the use of the

undefined term “interior” is forbidden in your proof.) AT DA BB,
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7. Let AB be a horizontal segment in Euclidean plane. Point C is marked inside the
segment AB so that AC = a and CB = b. A circle w of an unknown radius is drawn
through the ends A and B of the segment AB; its center is a known point 0. You can -
draw an arbitrary circle o centered at point C' and denote by D and E the intersection
points where the circle o meets the circle w.
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(a) Draw by compass and straightedge the circle o centered at point C such that its
intersection points D and E with the circle w are the ends of a diameter of the circle
o. Enumerate and describe the steps of your construction.
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(b) Determine the radius r of the circle o in terms of the lengths a and b.

Answer: r = A 1,,
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8. (a) Let ABCD be a Saccheri quadrilateral with the base BC. Prove: LiI AB = c @;; %
] AD - BC < 2 AB. Be=Ar, AD=4
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(b) Let ABCD be aLambert—quadrilateral with the acute angle at the v

ertex D. —
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9. Consider the unit circle w centered at the origin of the zy—plane as the Klein model AS

4
K? of hyperbolic plane H?. Let A = (5’()) and X = (0,1). Draw the chord XY
passing through point A and drop the perpendicular Y'B from Y to the z—axis.

(a) F& d éhe Euclidean length of the segment AB. Answer: A ff
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(b) Find the hyperbolic lengths ||OA|| and ||AB]| of the segments OA and AB. Which
length is bigger, [|OA|| or ||AB||? Answer:
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10. Let £ be a horizontal line in the Fuclidean plane and w be a circle of some radius
centered at point O € £. Point A is located inside the circle w in the upper half plane
with the border /. PROBLEM: Construct the perpendicular line k = AB from point
A to the line £ (B € () using ONLY straightedge (and DO NOT use compass in your

construction). Justify your construction, i.e. prove that the line 1@ is perpendicular
to the line £, indeed.
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