
MAT 3271: Propositions 2.1 & 2.2 Mike Sorice

Proposition (2.1). Given m, l � m ∦ l & m 6= l, then ∃!P � P i m & P i l.

Proof. Suppose @P � P i m & P i l. Then, m ‖ l by definition. l ∦ m by hypothesis.
⇒⇐. ∴ ∃P � P i m & P i l.

Suppose ∃Q 6= P � Q i m & Q i l. Then P i m & Q i m & P i l & Q i l.
P 6= Q by supposition. ∴, ∃!n � P i n & Q i n by Incidence Axiom 1. ∴ l,m = n by
definition. ∴ l = m by the transitive property of =. However l 6= m by hypothesis. ⇒⇐.
∴ @Q 6= P � Q i m & Q i l. ∴ P is unique by definition.

Lemma. There exist at least three distinct lines.

Proof. ∃ distinct P,Q,R � @o � P i o & Q i o & R i o by Incidence Axiom 3. ∴ ∃!l,m, n �
P i l & Q i l & P i m & R i m & Q i n & R i n & R 6 i l & Q 6 i m & P 6 i n by Incidence
Axiom 1.

Proposition (2.2). ∃ distinct l,m, n that are not concurrent.

Given l 6= m, either l ‖ m or l ∦ m by the law of the excluded middle.

Proof of case l ‖ m. l ‖ m ⇒ @P � l i P & m i P by definition. ∴ ∀n@P � P i l & P im & P i n
a fortiori. ∃n 6= l,m by lemma. ∴ l,m, and n are not concurrent by definition. ∴ ∃l,m, n
distinct and not concurrent.

Proof of case l ∦ m. l ∦ m ⇒ ∃!P � P i l & P i m by Proposition 2.1. ∃Q 6= P �
Q i l & ∃R 6= P � R i m by Incidence Axiom 2. Further, Q 6 i m & R 6 i l as P is unique.
Further still, Q 6= R as otherwise Q i m since R i m.

Now, ∃!n � Q i n & R i n by Incidence Axiom 1. n 6= l as R i n by definition, but
R 6 i l. n 6= m as Q i n by definition, but Q 6 i m. ∴ l,m, n are distinct.

Suppose P i n. Then, P i n & Q i n. But P i l & Q i l and l is unique by
Incidence Axiom 1, so l = n. l 6= n. ⇒⇐. ∴ P 6 i n. P is unique, so ∀Q, either
Q = P ⇒ Q i l,m & Q 6 i n or Q 6= P ⇒ Q 6 i l or Q 6 i m. ∴ @Q � Q i l,m, n. ∴ ∃l,m, n
distinct and not concurrent.
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