MAT 3271: Propositions 2.1 & 2.2 Mike Sorice

Proposition (2.1). Given $m, l \ni m \nmid l \& m \neq l$, then $\exists ! P \ni P \mid m \& P \mid l$.

Proof. Suppose $\nexists P \ni P \bowtie \& P \bowtie \& P \bowtie \& P \bowtie \& B \bowtie \&$

Suppose $\exists Q \neq P \ni Q \bowtie k Q \bowtie l$. Then $P \bowtie k Q \bowtie m \& P \bowtie l \& Q \bowtie l$. $P \neq Q$ by supposition. \therefore , $\exists ! n \ni P \bowtie k Q \bowtie n$ by Incidence Axiom 1. $\therefore l, m = n$ by definition. $\therefore l = m$ by the transitive property of =. However $l \neq m$ by hypothesis. $\Rightarrow \Leftarrow$. $\therefore \nexists Q \neq P \ni Q \bowtie k Q \bowtie l$. $\therefore P$ is unique by definition.

Lemma. There exist at least three distinct lines.

Proof. ∃ distinct $P, Q, R \ni \nexists o \ni P \bowtie Q \bowtie Q \bowtie R \bowtie o$ by Incidence Axiom 3. ∴ ∃! $l, m, n \ni P \bowtie Q \bowtie Q \bowtie Q \bowtie R \bowtie Q \bowtie M \& P \bowtie n$ by Incidence Axiom 1.

Proposition (2.2). \exists distinct l, m, n that are not concurrent.

Given $l \neq m$, either $l \parallel m$ or $l \not \parallel m$ by the law of the excluded middle.

Proof of case $l \parallel m$. $l \parallel m \Rightarrow \nexists P \ni l \bowtie P \& m \bowtie P$ by definition. $\therefore \forall n \not\equiv P \ni P \bowtie k \bowtie P \bowtie m \& P \bowtie n$ a fortiori. $\exists n \neq l, m$ by lemma. $\therefore l, m$, and n are not concurrent by definition. $\therefore \exists l, m, n$ distinct and not concurrent.

Proof of case $l \not \mid m$. $l \not \mid m \Rightarrow \exists ! P \ni P \mid l \& P \mid m$ by Proposition 2.1. $\exists Q \neq P \ni Q \mid l \& \exists R \neq P \ni R \mid m$ by Incidence Axiom 2. Further, $Q \not \mid m \& R \not \mid l$ as P is unique. Further still, $Q \neq R$ as otherwise $Q \mid m$ since $R \mid m$.

Now, $\exists ! n \ni Q \mid n \& R \mid n$ by Incidence Axiom 1. $n \neq l$ as $R \mid n$ by definition, but $R \not \mid l$. $n \neq m$ as $Q \mid n$ by definition, but $Q \not \mid m$. $\therefore l, m, n$ are distinct.

Suppose P I n. Then, P I n & Q I n. But P I l & Q I l and l is unique by Incidence Axiom 1, so l=n. $l \neq n$. $\Rightarrow \Leftarrow$. $\therefore P$ /I n. P is unique, so $\forall Q$, either $Q=P\Rightarrow Q$ I l,m & Q /I n or $Q\neq P\Rightarrow Q$ /I l or Q /I m. $\therefore \nexists Q\ni Q$ I l,m,n. $\therefore \exists l,m,n$ distinct and not concurrent.