MAT 2800: Assignment 1 Mike Sorice

1.2 Exercises

1. Given a convex *n*-gon *p* whose vertices are $A_1, A_2, ..., A_n$.

Definition 1 (Adjacent vertices). Two vertices of a polygon are *adjacent* if and only if they are both endpoints of a single side.

Lemma. Each vertex is adjacent to exactly 2 other vertices.

Proof. Each vertex is the end point of exactly 2 sides of the polygon by definition. \Box

Stipulate that A_i is adjacent to $A_{(i-1) \bmod n}$ and $A_{(i+1) \bmod n}$. Thus, A_1 is adjacent to A_n and A_2 , A_2 is adjacent to A_3 and A_1 , etc. This stipulation is made without loss of generality as, if it does not hold for some indexed set of vertices $\{A_i\}$, we can re-label the set $\{A_{i'}\}$ by selecting any vertex as $A_{1'}$, labeling its adjacent vertices as $A_{2'}$ and $A_{n'}$, etc.

Choose some point, say A_1 , and draw the diagonals from A_1 , i.e. line segments from A_1 to all non-adjacent vertices. This will produce the following set of triangles:

$$
T = \{ \triangle A_1 A_2 A_3, \triangle A_1 A_3 A_4, \triangle A_1 A_4 A_5, ..., \triangle A_1 A_{n-1} A_n \}
$$

=
$$
\bigcup_{i=2}^{n-1} \{ \triangle A_1 A_i A_{i+1} \}.
$$
 (1.1)

T clearly contains $n-2$ triangles. Further, each side of p appears exactly once in T as the two outer triangles $(\triangle A_1A_2A_3, \triangle A_1A_{n-1}A_n)$ have sides consisting of 2 sides of p and one diagonal, whereas each of the $n-4$ inner triangles have sides consisting of 1 side of p (that between the higher-index vertices) and 2 diagonals (those between the higher-index vertices and A_1 .) Therefore, the non-diagonal sides of T are exactly the same as the sides of p .

Now consider the angles of the triangles in T. Let $\angle A_i^{(p)}$ denote the (interior) angle at vertex A_i in p and let $\angle A_i^{(j)}$ denote the angle at vertex A_i in the jth triangle from T. Now, A_2 and A_n are vertices only of the outer triangles and therefore $\angle A_2^{(p)} = \angle A_2^{(1)}$ $\chi_2^{(1)}$ and $\chi_2^{(n)} = \chi_2^{(n-2)}$ as the angles are formed of the very same sides. A part of $\angle A_1^{(p)}$ $_1^{(p)}$ appears in each triangle in T as it is cut by the diagonals into the parts $\left\{ \angle A_1^{(1)} \right\}$ $\chi_1^{(1)}, \angle A_1^{(2)}$ $\chi_1^{(2)}, \ldots, \angle A_1^{(n)}$ $\binom{n}{1}$. This is true as p is convex, so $\angle A_1^{(p)}$ $_1^{(p)}$ is always intersected by the ray emanating from A_1 which is an extension of a given diagonal. Similarly, each of the other angles is cut into two parts by the diagonal from A_1 to its corresponding vertex, such that $\angle A_i^{(p)}$ $i^{(p)}$ for $i \in \mathbb{N}$ and $2 < i < n$ is made of the two parts $\angle A_i^{(i-2)}$ $\mu_i^{(i-2)}$ and $\angle A_i^{(i-1)}$ $i^{(i-1)}$. Again, this is true as p is convex, so the diagonal from A_1 to A_i intersects $\angle A_i^{(p)}$ $i^{(p)}$, dividing it into the two parts listed.

By the triangle angle sum theorem (valid in the Euclidean plane,) the measures of the angles in each triangle in T sum to 180 $^{\circ}$. As there are $n-2$ such triangles as shown above, the sum of all such angle measures is $180(n-2)°$. Therefore, we have:

$$
180(n - 2)^{\circ} = m\angle A_1^{(1)} + m\angle A_2^{(1)} + m\angle A_3^{(1)}
$$

+
$$
\sum_{i=2}^{n-3} \left(m\angle A_1^{(i)} + m\angle A_{i+1}^{(i)} + m\angle A_{i+2}^{(i)} \right)
$$

+
$$
m\angle A_1^{(n-2)} + m\angle A_{n-1}^{(n-2)} + m\angle A_n^{(n-2)}.
$$

=
$$
\sum_{i=1}^{n-2} m\angle A_1^{(i)} + m\angle A_2^{(p)} + m\angle A_3^{(1)} + m\angle A_3^{(2)}
$$

+
$$
\frac{m\angle A_1^{(2)}}{m\angle A_4^{(p)}} + m\angle A_4^{(3)} + \dots + \underbrace{m\angle A_{n-1}^{(n-3)}}_{m\angle A_{n-1}^{(p)}} + m\angle A_n^{(n-2)}
$$

+
$$
m\angle A_n^{(p)}
$$

=
$$
\sum_{i=1}^{n} m\angle A_i^{(p)},
$$
 (1.2)

but $\sum_{i=1}^n m \angle A_i^{(p)}$ $i^{(p)}$ is the sum of the interior angles of p. Q.E.D.

2. If an *n*-gon is *regular*, then its *n* angles are all congruent. Let $\{\angle A_i\}_{i=1}^n$ be the angles of a regular *n*-gon p. Since p is regular, by definition $\angle A_1 \cong \angle A_2 \cong ... \cong \angle A_n$ and $m\angle A_1 = m\angle A_2 = ... = m\angle A_n$ since congruent angles have equal measure. Say $m\angle A_i = \alpha$.

By the result in (1),

$$
\sum_{i=1}^{n} \underbrace{m \angle A_i}_{\alpha} = 180(n-2)^{\circ} = n\alpha,
$$

so we have for the measure of any of the angles:

$$
\alpha = \frac{n-2}{n} 180^\circ.
$$

Q.E.D.